
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 55

A Hybrid of Artificial Bee Colony, Genetic Algorithm,
and Neural Network for Diabetic Mellitus Diagnosing

1Department of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region – F.R. Iraq
2Department of Software Engineering, Faculty of Engineering, Koya University, Kurdistan Region – F.R. Iraq

3Department of Software and Informatics Engineering, Salahaddin University, Erbil, Kurdistan Region – F.R. Iraq
4Department of Computer Engineering, Ishik University, Erbil, Kurdistan Region – F.R. Iraq

Abstract–Researchers, widely have introduced the
artificial bee colony (ABC) as an optimization algorithm
to deal with classification and prediction problems. ABC
has been combined with different artificial intelligent
techniques to obtain optimum performance indicators.
This work introduces a hybrid of ABC, genetic algorithm
(GA), and back propagation neural network (BPNN) in
the application of classifying and diagnosing diabetes
mellitus (DM). The optimized algorithm is combined with
a mutation technique of GA to obtain the optimum set of
training weights for a BPNN. The idea is to prove that
weights’ initial index in their initialized set has an impact
on the performance rate. Experiments are conducted in
three different cases; standard BPNN alone, BPNN trained
with ABC, and BPNN trained with the mutation based
ABC. The work tests all three cases of optimization on two
different datasets (primary dataset and secondary dataset)
of DM. The primary dataset is built by this work through
collecting 31 features of 501 DM patients in local hospitals.
The secondary dataset is the Pima dataset. Results show
that the BPNN trained with the mutation based ABC can
produce better local solutions than the standard BPNN and
BPNN trained in combination with ABC.

Index Terms—Artificial Bee Colony, Artificial Neural Networks,
Diabetic Mellitus, Evolutionary Algorithms.

I. Introduction
Artificial neural network (ANN) is an information

processing paradigm that simulates the nervous system of the
human brain and its cognitive processes. The key features of

Tarik A. Rashid 1,3, Saman M. Abdullah 2,4

an ANN (Priddy and Keller, 2005) are pliability, competence,
capacity to simplify, and resolve categorization difficulties,
and determining similarity in patterns. ANNs, and their
training algorithms have become increasingly important for
modeling and optimization in many fields of science and
engineering. Among many different ANN models, BP-based
trained ANN as a multi-layer structure has been widely
utilized rather than other training types due to its great
capability in-universe approximation and optimization (Nawi,
et al., 2010). Nevertheless, BP-based ANN suffers from a
low convergence rate and instability; this would be triggered
through falling in local optimum solutions (Karaboga, et al.,
2014). For that reasons, numerous procedures for optimizing
and enhancing the learning method of the BP-based ANN
(Nawi, et al., 2011). In the direction of that end, different
global search algorithms have been involved to optimize
the weights that initialize a BP trained with Artificial bee
colony (ABC) and genetic algorithm (GA) (Nawi, et al.,
2014). The idea of searching in ABC, and GA is different.
ABC is searching for the best solution among a set of
populations through an updating process. The important
activities of ABC are to share the indexes of the provided
solutions, which are known as food sources. This process
in the ABC is called information sharing (Karaboga, et al.,
2014; Akay and Karaboga, 2015). However, a typical ABC
cannot do this sharing efficiently. Although GA, which also
has some populations, can provide efficient index sharing,
the process of updating sources has no relation with the
learning rate as found in ANN and ABC. GA is just using
crossover among the population to get new offspring (Kumar
and Verma, 2012). A recent article (Nawi, et al., 2010)
surveyed two decades of research and showed that there are
numerous ways to search for an optimization of an ANN. It
shows that the simplest and best way are to optimize through
weight updating. The article also presents different methods
for weight updating, because we have found no previous
published research on this topic. There are many works
utilized different optimization methods in different fields.
The most popular methods are practical swarm optimization,
ant colony optimization, bacterial foraging optimization,
evolutionary algorithm, and GA. In some studies, ABC

ARO-The Scientific Journal of Koya University
Volume VI, No.1(2018), Article ID: ARO.10368, 10 pages
DOI: 10.14500/aro.10368
Received 02 January 2018; Accepted 20 May 2018
Regular research paper: Published 13 June 2018
Corresponding author’s, e-mail: tarik.ahmed@ukh.edu.krd
Copyright © 2018 Tarik A. Rashid, Saman M. Abdullah. This is
an open-access article distributed under the Creative Commons
Attribution License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

56 http://dx.doi.org/10.14500/aro.10368

outperforms other methods (Karaboga, et al., 2014; Nawi,
et al., 2011).

The objective of this article is to combine the mathematical
calculation of ABC and the crossover technique of GA
to generate a new initialized weights’ set that can increase
the efficiency of back propagation neural network (BPNN)
training and learning. We then apply the proposed approach
to the process of diagnosing diabetes mellitus (DM) cases.

The rest of paper is organized as follows: Section 2,
describes clinical and soft classification of DM, next, BPNN
is presented, in Section 4, nature-inspired algorithm is
introduced, then ABC is defined in Section 6, then, GA is
explained, followed by an explanation of ANN training with
Mutated ABC, in Section 8, details of experimental results
are presented, and finally, the key points are concluded.

II. Clinical and Soft Classification of DM
DM is a chronic disease in which a patient’s body is unable

to produce or unable to properly use and store glucose. It is a
lifelong condition that affects the body’s ability to efficiently
use the energy found in food. As of 2014, an estimated 387
million people have diabetes worldwide. From 2012 to 2014,
diabetes is estimated to have caused 1.5–4.9 million deaths
each year. The number of people with diabetes is expected
to rise to 592 million by 2035. The global economic cost
of diabetes in 2014 was estimated to be $612 billion USD
(Federation, 2014).

This disease has many types and forms; however, the most
popular types are Type 1 (known as insulin-based DM) and
Type 2 (known as noninsulin-based DM) (Wild, et al., 2004).
Physician must define the type of DM a patient has so that
proper medications can be given and so that patients can be
instructed on how to minimize side effects of the disease.
Recently, many soft computing models have been built to
diagnose and classifying DM cases into either Type 1 or
Type 2. Some soft models can predict the rate of glucose in
the blood for DM patients based on various predictors. One
of the most popular soft computation tools that utilized for
DM distinguisher is ANN (Association, 2014).

III. BPNN
BPNN is one of the most effective ANN supervised

learning algorithms. It causes an ANN to learn through the
process of minimizing errors at the output layer’s neurons.
Errors in the hidden layer of any BPNN can also be
minimized based on the rate of errors in the output layer. This
computation is the core fundamental of the learning process
in any BP-based ANN structure. Through this process, a
BPNN calculates and adjusts the weights utilizing gradient
descent method (Atakulreka and Sutivong, 2007; Dai and
Liu, 2012; Ojha, et al., 2016; Ojha, et al., 2017). Through
this weights adjustment, BPNN can minimize the error rate
at the output layer. Errors at the output layer correspond to
the sum of the squares of the errors recorded between the
actual and desired outputs, as indicated in Eq. (1).

2
1
()j

P i ii
E d y

=
= −∑ (1)

In (1), d is the desired output and y is the actual output.
E represents the total sum of errors that can be obtained for
the P pattern, whereas i is the ith neuron and j is the number
of the output neuron. BPNN uses the Gradient Descent
method as indicated in Eq. (2), to minimize the rate of EP.

µ P
ki

ki

EW
W
∂

= −
∂ (2)

The variable in Eq. (2), is the weight located between the
ith neuron of the n-1 layer, and kth neuron in the n layer. The
output layer errors ∂l, and the hidden layer errors ∂i can be
obtained using Eq. (3) and (4), respectively.

∂l=µ(di−yi)f’ (yi) (3)

()'µ i l lj i
i

W f y∂ = ∂∑ (4)

Based on the error rates that obtain in both hidden and
output layers, weights can be adjusted to calculate new
weights, using Eq. (5) at the hidden layer, Eq. (6) at the
output layer, and Eq. (7) for updating the bias values.

Wij(K+1)=Wij(K)+µ∂i yi (5)
Wlj(K+1)=Wlj(K)+µ∂l yi (6)
bi(K+1)=bi(K)+µ∂I (7)

In the past three equations, K is the number of epochs
and µ is the learning rate. These equations are the core of
learning for any BP based NN structure. The learning is the
process of updating the weight values that connecting layers
through existing neurons (Atakulreka and Sutivong, 2007;
Dai and Liu, 2012; Ojha, et al., 2016; Ojha, et al., 2017).
The new value of any weight depends on the learning rate
and the rate of errors computed in the neurons of the output
layer. The value of the learning rate is simply a fixed number
between (0, 1), and the value that initializes each weight laid
between neurons of two layers is chosen randomly between
(−1, +1). With such initialization of the learning rate and the
weight values, PBNN falls into local minima.

IV. Nature Inspired Algorithm
These are swarm intelligence and bio-inspired algorithms

that would form a hot topic in the expansions of new
algorithms inspired by nature (Karaboga, et al., 2014; Nawi,
et al., 2014; Akay and Karaboga, 2015; Kumar and Verma,
2012). These are regarded as nature-inspired metaheuristic
algorithms that are based on swarm intelligence, biological,
physical, and chemical organizations. As a result, these
algorithms can be called swarm-intelligence-based, bio-
inspired based, physics-based, and chemistry-based,
reliant on the foundations of stimulation. It can be said
that not all of these different algorithms are effectual and
successful (Karaboga, et al., 2014; Nawi, et al., 2014; Akay
and Karaboga, 2015; Kumar and Verma, 2012). Some of
these algorithms have established to be extremely good,
consequently, they have become frequently implemented
and modified for solving real-world problems. Although

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 57

the research in this area of interest is very dynamic and
self-motivated purely for the reason that problems with
which researchers and scientists are typically conscious
are becoming progressively complex because of size and
other aspects. Moreover, recent problems are gathering up
constantly on which existing approaches are not dynamic.
This gives us the awareness that the Natured Inspired
Algorithms and Swarm Intelligence techniques have been
there for researchers and scientists in various fields and
finalized it for them. That is why now and in the foreseeable
future, we need to look as if to attain loads of inspiration
from these nature-inspired algorithms. Current Nature-
Inspired Algorithms would cover the ABC Algorithm, the Bat
Algorithm, and many others (Karaboga, et al., 2014; Nawi,
et al., 2014; Akay and Karaboga, 2015; Javadi, et al., 2010;
Gen, and Cheng, 1997). The above algorithms have been
very fruitful in terms of solving various applications, if they
are gaged against initial Nature-Inspired Algorithms such as
the GA and others (Gen, and Cheng, 1997). Besides, some of
them, for instance, the GA, would have very few parameters
that can be randomly set (Kumar and Verma, 2012). We
also need to be watchful, since the number of new nature-
inspired algorithms is receiving greater. This will make it
very difficult for researchers, scientists, and users to select
appropriate algorithms for solving their applications. Thus,
it is imperative to step back and see the differences among
these algorithms, and how they are related to each other. It
can be seen that some of these algorithms are nothing more
than a reuse of prior optimization ideas. It is worth saying
that this problem will bring us to an action plan to be taken
by researchers and scientists in general and the action plan
is to make a list and group these algorithms, or maybe list
out these algorithms in terms of how these algorithms are
constructed, their performance, precision, computation
complexity, memory, and power usage, etc.

V. ABC
ABC is a population-based optimization algorithm that

tries to achieve global minimum (Karaboga, et al., 2014;
Akay and Karaboga, 2015). It is a stochastic optimization
algorithm that mimics the foraging behavior of the honeybee.
Solutions in this algorithm have multi-dimensional search
space, which is represented as a food source. Only three
types of bees (employed, onlooker, and scout) can maintain
the solutions that are given by ABC algorithm. Scout bees
will locate the best food source. They will then return to
the hive, where other bees onlookers will be recruited to the
food source for collection. At this point, the bees are now
“employed” in the collection of the food source. By analogy,
the fundamental idea of the ABC algorithm is for an agent
to look for the best solution. It starts by selecting a random
solution among existing space of possible solutions; after
that, it continues attempting to find better solutions, while
also abandoning the unpromising ones. The iteration of the
ABC stops when it reaches either the maximally optimal
solution or if or no better suboptimal solution can be found.

The ABC starts with initializing the solutions randomly, as
indicated in Eq. (8). Then, the new food source location is
updated and obtained by Eq. (9).

xi,j=xmin,j+rand[0,1]×(xmax,j−xmin,j) (8)
Where:
i =1, 2,…, N and j = 1, 2,…, D.
xi,j is the parameter to be optimized for ith employ bee, N is

the employ bee number.
D is the dimensional size of solution. j is the associated

solution in D space with the ith employ bee.
xmax,j and xmin,j are the upper and lower bound for the .

vi,j=xi,j+φ(xi,j−xk,j) (9)
In Eq. (9), xi,j is the ith employed bee, and vi,j is the new

solution for the xi,j.xk,j is a neighbor bee for the xi,j. φ is
selected randomly [−1,1]. j ∈ {1, 2,…, D} and k ∈ {1, 2,…,
N} selected randomly.

The new food position (solution) will be memorized in an
onlooker for one of the n employers, based on the result of
the fitness function. The detailed pseudo-code for the ABC
algorithm is given below:
Step-1: Initialize the population of solutions xi,j, i = 1. N, and

j = 1 .D
Step-2: Evaluate the population
Step-3: iteration=1
Step-4: repeat
Step-5: Produce new solutions υi,j for the employed bees using

(9) and evaluate them
Step-6: Calculate the fitness values for the solutions xi,j
Step-7: Produce the novel solutions υi,j for the onlookers from

the solutions xi,j selected depending on the evaluation or
fitness function

Step-9: if occurs, control the scout’s uncontrolled solution and
randomly exchange that with a novel xi,j solution.

Step-10: Keep the optimal solution attained until now.
Step-11: iteration=iteration+1
Step-12: while waiting for iteration that is equal to maximum

iteration number (MIN).

VI. GA: Mutation or Swapping Process
GA is a method for moving from one population to a new

population using a kind of “natural selection” or inspired
operators of selection, crossover, and mutation. These
three rules are involved in each iteration for producing
new individuals for future generations. After selecting an
individual, GA uses two rules for creating the next generation.
The first rule is a crossover, where new generation comes
from a combination of two parents. The second rule is a
mutation in which a parent will be reordered to get new
generation. The last rule creates random changes on a parent
to generate a new child. In most cases, it swaps an element
or elements in the parent set. Sometimes, the mutation is
only a reordering already existing element.

The number of elements involved in the swapping process
affects the time complexity of the process. Involving many
elements decreases the complexity measure. However,
involving many elements in a swap, on the other hand,

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

58 http://dx.doi.org/10.14500/aro.10368

decreases the possibility rate of the swapping impact on
finding the global minima for a problem. This article
proposes a window that slides bidirectionally from both sides
of the weight’s vector to the center. The size of this window
will be checked in the coming section so that the perfect
number of elements that should be involved in the swapping
process can be obtained. Figure 1 shows an example of the
process of sliding and swapping elements.

In this example, the window size has been set up on two
elements, which means that at each slide two elements will
be involved in the mutation or swapping process.

The example above shows a vector with 14 elements. The
figure clearly shows the direction of sliding, which starts at
both ends of the vector forwarding to the center. Step1-A
shows the element at their original positions in the vector.
Step 1-B shows that the swapping has occurred. Accordingly,
two elements have swapped their positions. At Step 2, the
windows have shifted just over one element. Step 3 shows
the shifting and sliding process. This step also shows the
changes that occurred with the position of elements.

Two crucial factors should be noted. The first is the size
of the window, and the second is the window’s sliding size.
Tests have been done to identify these two factors. The aim
of this swapping is to get different sequences of elements
within the same vector, which means the change has
occurred at the position or the index of each element. This
requires placing an element in as many various positions
in the same vector as possible. Through different tests, the
suitable window’s size selected as two, and sliding size is
one. The other alternatives, such as two or more, showed two
main shortages. The first is duplicating and removing many
elements. The second is reducing the possibility of getting a
new sequence of elements.

VII. ANN Training with Mutated ABC
The core fundamental of training ANN is presented in Eq.

(8). Through this equation, a new set of weights is generated

from the old set based on learning and error rates. ANN with
Back-Propagation learning stacks more often with the problem
of local minimum through using such a way of weight
updating. The reason for facing such a problem is going back
to the structure of the ANN or the way that the ANN is trained
(Nawi, et al., 2014). To solve this problem, some solutions
have been proposed. The most common is using optimum
algorithms, which is somewhat time-consuming. Another
way is to focus on initialization methods of the weights. An
additional method is to train the neural network more than
once; each time the neural network will be initialized randomly
on different weights. All these methods can help us find the
global optimum of the training (Akay and Karaboga, 2015).

The only difference between neural network and other
optimization methods is in the means by which of weights
are updated. Equations (6) and (9) show two ways of weight
updating that are used in ANN and ABC, respectively.
The question is how the accuracy of an ANN will be if
the network is trained through Eq. (9) instead of Eq. (6)?
Another alternative to repeatedly initialize an ANN on
different weights is swapping the weights and changing their
locations. Thus, within these two processes, the problem
of trapping the ANN in the local minima can be solved.
Figure-2 shows the process of the training an ANN through
these weights updating and relocations in two simple loops.
The outer loop is to initialize and update the weights for an
ANN using the Eq. (9). Then, if the global minima are not
obtained, the mutation or swapping weights will be tested as
the inner loop. The size of the weightings set will be defined
with the structure definition of an ANN.

The steps below show the pseudo-code of the mutation
based ABC optimization for training ANN:
Step A: Through the predefined structure of the ANN (by which

the structure should fit the problem that the ANN is designed
for) the size of the initial set (weights) is dynamically defined.

Step B: Initializing the ABC algorithm through the steps that are
shown in the section of ARTIFICIAL BEE COLONY. Get the
first source of weights.

Fig. 1. Sliding and swapping elements.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 59

Step C: Do the mutation between the elements in the initial set
of weights (get from Step B).

Step D: Initialize the ANN training, validation, and testing.
Step E: Compare the obtained performance with the previous

one. Select the best.
Step F: Repeat Step C until no new offspring will be obtained.

Repeat the B until no more sources are available.

VIII. Simulation and Experimental Works
Various experimental tests are carried out, and details of

these can be described as follows:

A. BPNNs
The BPNN has three layers, where they are connected trimly

through the neurons that lay at each layer, and the weights
that lay between two neurons of two different layers. The first
layer is input layer, which the number of neurons there should
be equal to the number of the features that are selected as
significant for a problem. The subsequent layer is the hidden
layer, which enables the BPNN to achieve better performance.
The last layer is the output, where the actual output is
expected. Fig. 3 shows a typical structure of a BPNN (Ojha,
et al., 2017). The structure of the BPNN for both datasets is
not the same. For the local dataset, the number of features is
13 (Rashid, et al., 2016); however, for the Pima dataset, the
input features are 8 (UCI, Pima India Dataset, 2015).

This means that the input layer for both cases has 13
and 8 neurons, respectively. For both cases, the neurons at
the hidden layer are ,10 and at the output layer is one. The
only difference in both structures is the number of neurons
at the input layer. Therefore, the set of initial weights and
biases will be different too (151 for local dataset and 101 for
Pima dataset). The training function that used by this work is
“trainlm” function.

The activate function proposed for neurons in the hidden
layer structure is sigmoid function. The neuron at output
layer has a linear activate function.

The process of ANN’s training has been tested in three
different situations. The first is training ANN normally, which
means updating the weights of the ANN per Eq. (6). The
second situation is forcing the proposed ANN to update their
weights and bias values per Eq. (9), which is the equation
that used by ABC algorithm. The last scenario is the same as
the second scenario; however, the positions of the initialized
weights in the second scenario will be changed (swapped)
based on the steps of GA. For all scenarios, the performance
indicator measured is calculating the accuracy rate based on
the true and false classification rates.

B. Normal Training of BPNN
“Trainlm” is the most common training function used

in BPNN. It is also known as the Levenberg-Marquardt
optimization algorithm (Priddy and Keller, 2005). The main
target of this learning function is to train the network until a
goal is achieved through the adjustment of the weights’ values
that initialized the network. Through this learning process,
the BPNN minimizes the errors that obtained at output layer.
The training process of the BPNN terminates immediately
when the goal is obtained. However, the obtained goal
is not guaranteed to be optimal, as the BPNN depends on
gradient descent method. Another factor that terminates the
training is the number of failure validation checks. The BP
algorithm stops training when the validation check reaches
the predefined maximum number. This situation of BP is
an indicator of trapping into a local problem, where no
performance improvements can be achieved as the training
directs the network to the worst situation of learning.

BPNN starts to find solutions from an initial point and
continues until the steepest point (a point down toward the

Fig. 2. The process of mutation artificial bee colony training of artificial neural network.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

60 http://dx.doi.org/10.14500/aro.10368

optimum minimization). Two parameters affect the training
of the BPNN. The first is called learning rate, in which the
value is ranged between zero and one. A small value increases
the iteration number, and a large value avoids the BPNN to
find the optimum solution. To address that, this work tests
the training of the BPNN with two datasets. For each dataset,
the network has been initialized with 300 initial sets. Each
set has w number of weights and b number of bias values.
This work needs to initialize the proposed BPNN 300 times,
and each time the initial weights have a different number.

The performance of the BPNN for both dataset and for each
set of initial weights will be recorded. Then, the minimum
and maximum performance for each dataset will be selected
and compared, as shown in Table I. Table 1 also shows the
CPU time, which measured by iterations, for both datasets.
This performance indicates that the network has found a
solution. However, it is not clear whether the solution is
optimum. Nevertheless, Fig. 4 makes clear that the no further
improvement can be obtained from that solution, as the
validation check shows that training is going in the wrong
direction. Even more, the gradient degree at the same epoch
(iteration = 8) is going up, which confirms trapping the network
into a solution where no better solution could be reached.

Fig. 5 shows the performance of a BPNN that normally
trained with 300 different sets of the initial weights. The
network starts each time training with an initial set of weight
and bias values (1 × 151), which obtained randomly.

Normally, when the BPNN enters the training phase,
the values of the weights and the biases will be randomly
initialized in the range of −1, +1. The figure shows numerous
solutions, which obtains when the initial weight has been
changed. The figure also explains the impact of the initial
weight on the process and the direction of the training phase
of the BPNN. This means that the BPNN can achieve better

learning if the weights and biases are initialized with proper
values. However, the BPNN has no ability to change the
initial values of weights and biases after the training phase
begins. Therefore, the BPNN cannot change the direction of
learning when the network has been initialized with improper
values of weights and biases.

To overcome this problem, BPNN should be able to find
a proper set of weight and bias values among available
alternatives.

Practically, researchers follow the K-fold method (Kohavi,
1995) to determine the best solution or the optimal average of
the obtained solutions. They run the training phase of a BPNN
several times. With each run, the accuracy of the network
will be preserved. Then, after K-fold, either the best accuracy
will be selected or (in most cases) the average of available
solutions will be calculated. With such a process, it is not
guaranteed that the best solution is the optimum, because there
might exist a set of weights and biases that makes BPNN
yield higher accuracy than that obtained through the K-fold
method. Therefore, with such a process there is no guarantee
that the best solution found is the optimum solution.

C. ABC based BPNN training
The core of the training in BPNN is updating the weights

to minimize errors at the output stage. To achieve this, the set

Fig. 3. Typical structure for backpropagation neural network (Priddy and Keller, 2005).

TABLE I
BPNN performance with normal training

Datasets Performance (MSE) CPU time

Best Worst

Pima 0.1324 0.1856 23.2
Local data 0.1298 0.1926 95.4
BPNN: Back propagation neural network

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 61

of initialized weights of the network will be updated based
on (6). The network uses only one set of initial weights and
based on the error rate at the output stage, and the learning
rate the new set of weights will be calculated for the next
round of training. This means that only one set of weights
is utilized in the training process. The idea of involving
the ABC algorithm in this work is for utilizing various
sources (sets) of weights as initialized weight, where the
BPNN can start with. It is a kind of collaboration between
these two techniques to find out the perfect set of weights
that directs BPNN to find the perfect (optimal) solution.
The main changes on the process of the weight updating
have been presented in this work, which, are initializing the
weight approximately300 times. As a result, each time the
process of updating the weight is going on through the Eq.
(9) instead of Eq. (6). Fig. 6 shows the training performance,
which becomes more stable than that found in Fig. 5. The
local minima solution that obtained through this weight
initialization and updating was not found in the obtained
performance when the network trained normally.

ABC can serve BPNN with finding the proper set of
weights and biases value among the n numbers of the
population. However, there is a possibility of getting a better
solution than the combination of the BPNN with ABC would
do.

All elements in the sets have the same index during
training a BPNN with ABC. The question is about the
possibility of improving the accuracy of a BPNN when an
element with an index of (i,j) can be swapped with another
element that has an index (i±n,j±n) when n≠0.

To test the impact of mutation the weight’s indexes
on the performance of the BPNN, this article checks the
performance of the network with a single set of weights (1
× 81) for the local dataset. As mentioned in Section 5, the
sliding window is shifting by one element each time with
doing the mutation on two elements. Accordingly, each
single set of weights that have (1 × 81) dimension can be
used to generate 80 different sets that are having the same
elements of the mother set. However, in each iteration, the
elements will be in different indexes. Fig. 7 shows that a

Fig. 4. Failed validation for better solution obtaining.

Fig. 5. Performances of normal trained Backpropagation neural (local dataset).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

62 http://dx.doi.org/10.14500/aro.10368

set of weights can be used to generate different offspring,
and with each, the network gives a specific performance.
As a set of weights which has been mutated, based on the
process explained in Section 5, 81 sets of weights have
been obtained. Then, each set has been used to initialize
the BPNN. After that, only one observation is used to test
the network performance, with a change of offspring on
that original set of weights. Results show that different
performances have been obtained due to the change of the
indexes of the elements inside the set weight just for a
single observation. From those performances, and based on
the concept of the ABC algorithm, the best performance can
be selected as the global minima for that observation.

For the Pima dataset, the above-mentioned procedure and
what has been illustrated in Fig. 7 will be repeated. However,

the number of the offspring, in this case, will be 51, as the
number of input attributes will be reduced to eight.

Fig. 8 shows the 51 performances that have been obtained
for observation with each offspring weight. Considering the
locally prepared dataset, the training performance based on
501 local observations can be illustrated as shown in Fig. 9.

This research article assesses the performance of the
network with four parameters (CPU time, number of
epochs, MSE, and Accuracy) for testing the impact of
mutation of the weight’s indexes on the performance of
the BPNN, the workstation used for the experimentation
was equipped with a 2.5 GHz Core-i5 processor and 4-GB
of RAM. The simulations are carried out using MATLAB
2013a software. We employed two different data sets to
check the impact of the proposed approach of this work on

Fig. 6. Backpropagation neural network training based on artificial bee colony source (weights) initializing and updating.

Fig. 7. The 81 offspring of a weight set with different performance.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 63

the performance measures. We applied four criteria to three
methods: ANN alone, ANN with ABC optimization, and
ANN-ABC with weight mutation. Tables II and III show
the performance measures of the tests on ANN, ANN-
based ABC and ANN-based ABC with weight mutation
for both local and Pima datasets, respectively. The tests
show that accuracy is improving with the change of weight
initialization of the BPNN. The normal initialization cannot
improve the accuracy of the trained BPNN within a wide
range. The improvement just recorded for a few points of
a percent.

IX. Conclusion
It is a fact that BPNN can give different performances

when initialized with different values of weights. This means
that changing the values of weights for a BPNN affects the
performance of that network. However, if a network initializes
with same values of weights, it gives the same performance

Fig. 8. The 51 offspring of a weight set for Pima dataset with different performances.

Fig. 9. Network training with 501 observations (each with 91 offspring).

TABLE II
Testing the approach with local dataset

Algorithms/performance
measure

ANN ANN-based ABC ANN-based ABC with
weight mutation

CPU 76.2 123.6 149.4
Epoch 500 1000 1000
Error 0.132 0.0047 0.0013
Accuracy% 93.2 96.11 98.38
ANN: Artificial neural network, ABC: Artificial bee colony

TABLE III
Testing the approach with pima data set

Algorithms/performance
measure

ANN ANN-based ABC ANN-based
ABC with weight

mutation
CPU 23.2 95.5 113.1
Epoch 1000 1000 1000
Error 0.197 0.09 0.0045
Accuracy% 89.99 94.77 97.32
ANN: Artificial neural network, ABC: Artificial bee colony

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

64 http://dx.doi.org/10.14500/aro.10368

if the training process is repeated for unlimited iterations.
The target of changing the weight’s values for a network is
optimizing the performance (avoiding local optima). Many
algorithms have been combined with BPNN, such as ABC,
for maximizing the performance. With such algorithms, sets
of initial weights are randomly generated, and the best set
of weights will be selected based on the best performance
obtained. We investigated the impact of the indexes of each
weight inside the initialized set on the BPNN performance.
Through optimized algorithms, weights are initialized statically
(no changes in their indexes have been made). When an index
of weight inside the initialized set changes, the performance
is also changed, as shown in Figs. 7 and 8 with Tables II and
III. This means that there is a possibility of getting better
performances if the indexes of weights are changed.

The figures and tables show that initializing weights
randomly as done by ANN performs less efficiently and
accurately than ANN combined with ABC. However, when
the combination of ANN and ABC supported by index sliding
of GA, the resulting performance is optimal. It is not the
impact of changing the sources (as in the ABC algorithm), it is
instead the impact of changing the indexes of the weights too.
With such combinations, ABC can force the training process
of any BPNN to become more optimal in classification.

Another important problem solved in this article is
overfitting of ANN training. We tested the approach with
two different datasets, which means the proposed approach is
generalized for the different dataset. This also means that our
approach overcomes the problem of overfitting.

X. ACKNOWLEDGMENT
The authors would like to thank the editorial office of the

journal for reviewing of the manuscript. Furthermore, the
authors would like to thank both Mr. Edward Bassett from
the English Language Centre (a Juris Doctorate from the
University of Missouri-Columbia Law School (USA) and a
Master’s in Fine Arts (Creative Writing) from the University
of Southern Maine (USA) and Mr. Shalaw Najat Ghani (MA
in TESOL), from Valparaiso University for their continuous
effort in editing the manuscript.

References
Akay, B. and Karaboga, D., 2015. A survey on the applications of artificial
bee colony in signal, image, and video processing. Signal, Image and Video
Processing, 9(4), pp. 967-990.

American Diabetes Association., 2014. Diagnosis and classification of diabetes
mellitus. Diabetes Care, 37(Supplement 1), pp. S81-S90.

Atakulreka, A. and Sutivong, D., 2007. Avoiding local minima in feedforward
neural networks by simultaneous learning, in AI 2007, Advances in Artificial
Intelligence, Springer. Berlin Heidelberg, pp. 100-109.

Dai, Q. and Liu, N., 2012. Alleviating the problem of local minima in
Backpropagation through competitive learning, Neurocomputing, 94, pp. 152-
158.

Gen, M. and Cheng, R., 1997. Genetic Algorithms and Engineering Design,
John Wiley & Sons, New York.

International Diabetes Federation., 2014. IDF Diabetes Atlas, IDF. International
Diabetes Federation. Available from: http://diabetesatlas.org/resources/2017-
atlas.html. [Last retrieved on 2014 Nov 29].

Javadi, M.R., Mazlumi, K. and. Jalilvand, A., 2011. Application of GA, PSO
and ABC in optimal design of a stand-alone hybrid system for north-west of
Iran, in Electrical and Electronics Engineering (ELECO), 2011 7th International
Conference on, pp. I-203-I-210.

Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N., 2014. A comprehensive
survey: Artificial bee colony (ABC) algorithms and applications. Artificial
Intelligence Review, 42(1), pp. 21-57.

Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence. Vol. 2. Morgan Kaufmann, San
Mateo, CA, pp. 1137-1143.

Kumar, R. and Verma, R., 2012. Classification rule discovery for diabetes patients
by using genetic programming. International Journal of Soft Computing and
Engineering, 2(4), pp. 183-185.

Nawi, N.M., Ghazali, R. and Salleh, M.N.M., 2010. The development of
improved back-propagation neural networks algorithm for predicting patients
with heart disease. In: Information Computing and Applications, Springer,
Berlin. pp. 317-324.

Nawi, N.M., Ghazali, R. and Salleh, M.N.M., 2011. Predicting patients with
heart disease by using an improved back-propagation algorithm, Journal of
Computing, 3(2), pp. 53-58.

Nawi, N.M., Rehman, M.Z. and Khan, A., 2014. A new bat based back-
propagation (BAT-BP) algorithm, In: Advances in Systems Science, Springer,
Berlin. pp. 395-404.

Ojha, V.K., Abraham, A. and Snášel, V. 2017. Metaheuristic design of
feedforward neural networks: A review of two decades of research, Engineering
Applications of Artificial Intelligence, 60, pp. 97-116.

Ojha, V.K., Dutta, P., Chaudhuri, A. and Saha, H. 2016. Convergence Analysis
of Backpropagation Algorithm for Designing an Intelligent System for Sensing
Manhole Gases. In: Hybrid Soft Computing Approaches, Springer, Berlin,
pp. 215-236.

Priddy, K.L., and Keller, P.E., 2005. Artificial Neural Networks: An introduction.
SPIE Press, Bellingham.

Rashid, T.A., Abdullah, S.M., and Abdullah, R.M., 2016. An Intelligent Approach
for Diabetes Classification, Prediction and Description, In: Snášel, V., Abraham,
A., Krömer, P., Pant, M., Muda, A., editors. Innovations in Bio-Inspired
Computing and Applications. Advances in Intelligent Systems and Computing,
Vol. 424. Springer, Cham.

UCI. 2015. Pima India Dataset. UCI Machine Learning Repository. Available
from: https://www.archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.

Wild, S., Roglic, G., Green, A., Sicree, R., King, H. 2004. Global prevalence of
diabetes estimates for the year 2000 and projections for 2030. Diabetes Care,
27(5), pp. 1047-1053.

