
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10368 55

A Hybrid of Artificial Bee Colony, Genetic Algorithm, 
and Neural Network for Diabetic Mellitus Diagnosing

1Department of Science and Engineering, University of Kurdistan Hewler, Erbil, Kurdistan Region – F.R. Iraq
2Department of Software Engineering, Faculty of Engineering, Koya University, Kurdistan Region – F.R. Iraq

3Department of Software and Informatics Engineering, Salahaddin University, Erbil, Kurdistan Region – F.R. Iraq
4Department of Computer Engineering, Ishik University, Erbil, Kurdistan Region – F.R. Iraq

Abstract–Researchers, widely have introduced the 
artificial bee colony (ABC) as an optimization algorithm 
to deal with classification and prediction problems. ABC 
has been combined with different artificial intelligent 
techniques to obtain optimum performance indicators. 
This work introduces a hybrid of ABC, genetic algorithm 
(GA), and back propagation neural network (BPNN) in 
the application of classifying and diagnosing diabetes 
mellitus (DM). The optimized algorithm is combined with 
a mutation technique of GA to obtain the optimum set of 
training weights for a BPNN. The idea is to prove that 
weights’ initial index in their initialized set has an impact 
on the performance rate. Experiments are conducted in 
three different cases; standard BPNN alone, BPNN trained 
with ABC, and BPNN trained with the mutation based 
ABC. The work tests all three cases of optimization on two 
different datasets (primary dataset and secondary dataset) 
of DM. The primary dataset is built by this work through 
collecting 31 features of 501 DM patients in local hospitals. 
The secondary dataset is the Pima dataset. Results show 
that the BPNN trained with the mutation based ABC can 
produce better local solutions than the standard BPNN and 
BPNN trained in combination with ABC.

Index Terms—Artificial Bee Colony, Artificial Neural Networks, 
Diabetic Mellitus, Evolutionary Algorithms.

I. Introduction
Artificial neural network (ANN) is an information 

processing paradigm that simulates the nervous system of the 
human brain and its cognitive processes. The key features of 
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an ANN (Priddy and Keller, 2005) are pliability, competence, 
capacity to simplify, and resolve categorization difficulties, 
and determining similarity in patterns. ANNs, and their 
training algorithms have become increasingly important for 
modeling and optimization in many fields of science and 
engineering. Among many different ANN models, BP-based 
trained ANN as a multi-layer structure has been widely 
utilized rather than other training types due to its great 
capability in-universe approximation and optimization (Nawi, 
et al., 2010). Nevertheless, BP-based ANN suffers from a 
low convergence rate and instability; this would be triggered 
through falling in local optimum solutions (Karaboga, et al., 
2014). For that reasons, numerous procedures for optimizing 
and enhancing the learning method of the BP-based ANN 
(Nawi, et al., 2011). In the direction of that end, different 
global search algorithms have been involved to optimize 
the weights that initialize a BP trained with Artificial bee 
colony (ABC) and genetic algorithm (GA) (Nawi, et al., 
2014). The idea of searching in ABC, and GA is different. 
ABC is searching for the best solution among a set of 
populations through an updating process. The important 
activities of ABC are to share the indexes of the provided 
solutions, which are known as food sources. This process 
in the ABC is called information sharing (Karaboga, et al., 
2014; Akay and Karaboga, 2015). However, a typical ABC 
cannot do this sharing efficiently. Although GA, which also 
has some populations, can provide efficient index sharing, 
the process of updating sources has no relation with the 
learning rate as found in ANN and ABC. GA is just using 
crossover among the population to get new offspring (Kumar 
and Verma, 2012). A recent article (Nawi, et al., 2010) 
surveyed two decades of research and showed that there are 
numerous ways to search for an optimization of an ANN. It 
shows that the simplest and best way are to optimize through 
weight updating. The article also presents different methods 
for weight updating, because we have found no previous 
published research on this topic. There are many works 
utilized different optimization methods in different fields. 
The most popular methods are practical swarm optimization, 
ant colony optimization, bacterial foraging optimization, 
evolutionary algorithm, and GA. In some studies, ABC 
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outperforms other methods (Karaboga, et al., 2014; Nawi, 
et al., 2011).

The objective of this article is to combine the mathematical 
calculation of ABC and the crossover technique of GA 
to generate a new initialized weights’ set that can increase 
the efficiency of back propagation neural network (BPNN) 
training and learning. We then apply the proposed approach 
to the process of diagnosing diabetes mellitus (DM) cases.

The rest of paper is organized as follows: Section 2, 
describes clinical and soft classification of DM, next, BPNN 
is presented, in Section 4, nature-inspired algorithm is 
introduced, then ABC is defined in Section 6, then, GA is 
explained, followed by an explanation of ANN training with 
Mutated ABC, in Section 8, details of experimental results 
are presented, and finally, the key points are concluded.

II. Clinical and Soft Classification of DM
DM is a chronic disease in which a patient’s body is unable 

to produce or unable to properly use and store glucose. It is a 
lifelong condition that affects the body’s ability to efficiently 
use the energy found in food. As of 2014, an estimated 387 
million people have diabetes worldwide. From 2012 to 2014, 
diabetes is estimated to have caused 1.5–4.9 million deaths 
each year. The number of people with diabetes is expected 
to rise to 592 million by 2035. The global economic cost 
of diabetes in 2014 was estimated to be $612 billion USD 
(Federation, 2014).

This disease has many types and forms; however, the most 
popular types are Type 1 (known as insulin-based DM) and 
Type 2 (known as noninsulin-based DM) (Wild, et al., 2004). 
Physician must define the type of DM a patient has so that 
proper medications can be given and so that patients can be 
instructed on how to minimize side effects of the disease. 
Recently, many soft computing models have been built to 
diagnose and classifying DM cases into either Type 1 or 
Type 2. Some soft models can predict the rate of glucose in 
the blood for DM patients based on various predictors. One 
of the most popular soft computation tools that utilized for 
DM distinguisher is ANN (Association, 2014).

III. BPNN
BPNN is one of the most effective ANN supervised 

learning algorithms. It causes an ANN to learn through the 
process of minimizing errors at the output layer’s neurons. 
Errors in the hidden layer of any BPNN can also be 
minimized based on the rate of errors in the output layer. This 
computation is the core fundamental of the learning process 
in any BP-based ANN structure. Through this process, a 
BPNN calculates and adjusts the weights utilizing gradient 
descent method (Atakulreka and Sutivong, 2007; Dai and 
Liu, 2012; Ojha, et al., 2016; Ojha, et al., 2017). Through 
this weights adjustment, BPNN can minimize the error rate 
at the output layer. Errors at the output layer correspond to 
the sum of the squares of the errors recorded between the 
actual and desired outputs, as indicated in Eq. (1).
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In (1), d is the desired output and y is the actual output. 
E represents the total sum of errors that can be obtained for 
the P pattern, whereas i is the ith neuron and j is the number 
of the output neuron. BPNN uses the Gradient Descent 
method as indicated in Eq. (2), to minimize the rate of EP.
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The variable in Eq. (2), is the weight located between the 
ith neuron of the n-1 layer, and kth neuron in the n layer. The 
output layer errors ∂l, and the hidden layer errors ∂i can be 
obtained using Eq. (3) and (4), respectively.

∂l=µ(di−yi)f’ (yi) (3)

( )'µ i l lj i
i

W f y∂ = ∂∑  (4)

Based on the error rates that obtain in both hidden and 
output layers, weights can be adjusted to calculate new 
weights, using Eq. (5) at the hidden layer, Eq. (6) at the 
output layer, and Eq. (7) for updating the bias values.

Wij(K+1)=Wij(K)+µ∂i yi (5)
Wlj(K+1)=Wlj(K)+µ∂l yi (6)
bi(K+1)=bi(K)+µ∂I (7)

In the past three equations, K is the number of epochs 
and µ is the learning rate. These equations are the core of 
learning for any BP based NN structure. The learning is the 
process of updating the weight values that connecting layers 
through existing neurons (Atakulreka and Sutivong, 2007; 
Dai and Liu, 2012; Ojha, et al., 2016; Ojha, et al., 2017). 
The new value of any weight depends on the learning rate 
and the rate of errors computed in the neurons of the output 
layer. The value of the learning rate is simply a fixed number 
between (0, 1), and the value that initializes each weight laid 
between neurons of two layers is chosen randomly between 
(−1, +1). With such initialization of the learning rate and the 
weight values, PBNN falls into local minima.

IV. Nature Inspired Algorithm
These are swarm intelligence and bio-inspired algorithms 

that would form a hot topic in the expansions of new 
algorithms inspired by nature (Karaboga, et al., 2014; Nawi, 
et al., 2014; Akay and Karaboga, 2015; Kumar and Verma, 
2012). These are regarded as nature-inspired metaheuristic 
algorithms that are based on swarm intelligence, biological, 
physical, and chemical organizations. As a result, these 
algorithms can be called swarm-intelligence-based, bio-
inspired based, physics-based, and chemistry-based, 
reliant on the foundations of stimulation. It can be said 
that not all of these different algorithms are effectual and 
successful (Karaboga, et al., 2014; Nawi, et al., 2014; Akay 
and Karaboga, 2015; Kumar and Verma, 2012). Some of 
these algorithms have established to be extremely good, 
consequently, they have become frequently implemented 
and modified for solving real-world problems. Although 
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the research in this area of interest is very dynamic and 
self-motivated purely for the reason that problems with 
which researchers and scientists are typically conscious 
are becoming progressively complex because of size and 
other aspects. Moreover, recent problems are gathering up 
constantly on which existing approaches are not dynamic. 
This gives us the awareness that the Natured Inspired 
Algorithms and Swarm Intelligence techniques have been 
there for researchers and scientists in various fields and 
finalized it for them. That is why now and in the foreseeable 
future, we need to look as if to attain loads of inspiration 
from these nature-inspired algorithms. Current Nature-
Inspired Algorithms would cover the ABC Algorithm, the Bat 
Algorithm, and many others (Karaboga, et al., 2014; Nawi, 
et al., 2014; Akay and Karaboga, 2015; Javadi, et al., 2010; 
Gen, and Cheng, 1997). The above algorithms have been 
very fruitful in terms of solving various applications, if they 
are gaged against initial Nature-Inspired Algorithms such as 
the GA and others (Gen, and Cheng, 1997). Besides, some of 
them, for instance, the GA, would have very few parameters 
that can be randomly set (Kumar and Verma, 2012). We 
also need to be watchful, since the number of new nature-
inspired algorithms is receiving greater. This will make it 
very difficult for researchers, scientists, and users to select 
appropriate algorithms for solving their applications. Thus, 
it is imperative to step back and see the differences among 
these algorithms, and how they are related to each other. It 
can be seen that some of these algorithms are nothing more 
than a reuse of prior optimization ideas. It is worth saying 
that this problem will bring us to an action plan to be taken 
by researchers and scientists in general and the action plan 
is to make a list and group these algorithms, or maybe list 
out these algorithms in terms of how these algorithms are 
constructed, their performance, precision, computation 
complexity, memory, and power usage, etc.

V. ABC
ABC is a population-based optimization algorithm that 

tries to achieve global minimum (Karaboga, et al., 2014; 
Akay and Karaboga, 2015). It is a stochastic optimization 
algorithm that mimics the foraging behavior of the honeybee. 
Solutions in this algorithm have multi-dimensional search 
space, which is represented as a food source. Only three 
types of bees (employed, onlooker, and scout) can maintain 
the solutions that are given by ABC algorithm. Scout bees 
will locate the best food source. They will then return to 
the hive, where other bees onlookers will be recruited to the 
food source for collection. At this point, the bees are now 
“employed” in the collection of the food source. By analogy, 
the fundamental idea of the ABC algorithm is for an agent 
to look for the best solution. It starts by selecting a random 
solution among existing space of possible solutions; after 
that, it continues attempting to find better solutions, while 
also abandoning the unpromising ones. The iteration of the 
ABC stops when it reaches either the maximally optimal 
solution or if or no better suboptimal solution can be found.

The ABC starts with initializing the solutions randomly, as 
indicated in Eq. (8). Then, the new food source location is 
updated and obtained by Eq. (9).

xi,j=xmin,j+rand[0,1]×(xmax,j−xmin,j) (8)
Where:
i =1, 2,…, N and j = 1, 2,…, D.
xi,j is the parameter to be optimized for ith employ bee, N is 

the employ bee number.
D is the dimensional size of solution. j is the associated 

solution in D space with the ith employ bee.
xmax,j and xmin,j are the upper and lower bound for the .

vi,j=xi,j+φ(xi,j−xk,j) (9)
In Eq. (9), xi,j is the ith employed bee, and vi,j is the new 

solution for the xi,j.xk,j is a neighbor bee for the xi,j. φ is 
selected randomly [−1,1]. j ∈ {1, 2,…, D} and k ∈ {1, 2,…, 
N} selected randomly.

The new food position (solution) will be memorized in an 
onlooker for one of the n employers, based on the result of 
the fitness function. The detailed pseudo-code for the ABC 
algorithm is given below:
Step-1:  Initialize the population of solutions xi,j, i = 1. N, and 

j = 1 .D
Step-2: Evaluate the population
Step-3: iteration=1
Step-4: repeat
Step-5: Produce new solutions υi,j for the employed bees using 

(9) and evaluate them
Step-6: Calculate the fitness values for the solutions xi,j 
Step-7: Produce the novel solutions υi,j for the onlookers from 

the solutions xi,j selected depending on the evaluation or 
fitness function

Step-9: if occurs, control the scout’s uncontrolled solution and 
randomly exchange that with a novel xi,j solution.

Step-10: Keep the optimal solution attained until now.
Step-11: iteration=iteration+1
Step-12: while waiting for iteration that is equal to maximum 

iteration number (MIN).

VI. GA: Mutation or Swapping Process
GA is a method for moving from one population to a new 

population using a kind of “natural selection” or inspired 
operators of selection, crossover, and mutation. These 
three rules are involved in each iteration for producing 
new individuals for future generations. After selecting an 
individual, GA uses two rules for creating the next generation. 
The first rule is a crossover, where new generation comes 
from a combination of two parents. The second rule is a 
mutation in which a parent will be reordered to get new 
generation. The last rule creates random changes on a parent 
to generate a new child. In most cases, it swaps an element 
or elements in the parent set. Sometimes, the mutation is 
only a reordering already existing element.

The number of elements involved in the swapping process 
affects the time complexity of the process. Involving many 
elements decreases the complexity measure. However, 
involving many elements in a swap, on the other hand, 
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decreases the possibility rate of the swapping impact on 
finding the global minima for a problem. This article 
proposes a window that slides bidirectionally from both sides 
of the weight’s vector to the center. The size of this window 
will be checked in the coming section so that the perfect 
number of elements that should be involved in the swapping 
process can be obtained. Figure 1 shows an example of the 
process of sliding and swapping elements.

In this example, the window size has been set up on two 
elements, which means that at each slide two elements will 
be involved in the mutation or swapping process.

The example above shows a vector with 14 elements. The 
figure clearly shows the direction of sliding, which starts at 
both ends of the vector forwarding to the center. Step1-A 
shows the element at their original positions in the vector. 
Step 1-B shows that the swapping has occurred. Accordingly, 
two elements have swapped their positions. At Step 2, the 
windows have shifted just over one element. Step 3 shows 
the shifting and sliding process. This step also shows the 
changes that occurred with the position of elements.

Two crucial factors should be noted. The first is the size 
of the window, and the second is the window’s sliding size. 
Tests have been done to identify these two factors. The aim 
of this swapping is to get different sequences of elements 
within the same vector, which means the change has 
occurred at the position or the index of each element. This 
requires placing an element in as many various positions 
in the same vector as possible. Through different tests, the 
suitable window’s size selected as two, and sliding size is 
one. The other alternatives, such as two or more, showed two 
main shortages. The first is duplicating and removing many 
elements. The second is reducing the possibility of getting a 
new sequence of elements.

VII. ANN Training with Mutated ABC
The core fundamental of training ANN is presented in Eq. 

(8). Through this equation, a new set of weights is generated 

from the old set based on learning and error rates. ANN with 
Back-Propagation learning stacks more often with the problem 
of local minimum through using such a way of weight 
updating. The reason for facing such a problem is going back 
to the structure of the ANN or the way that the ANN is trained 
(Nawi, et al., 2014). To solve this problem, some solutions 
have been proposed. The most common is using optimum 
algorithms, which is somewhat time-consuming. Another 
way is to focus on initialization methods of the weights. An 
additional method is to train the neural network more than 
once; each time the neural network will be initialized randomly 
on different weights. All these methods can help us find the 
global optimum of the training (Akay and Karaboga, 2015).

The only difference between neural network and other 
optimization methods is in the means by which of weights 
are updated. Equations (6) and (9) show two ways of weight 
updating that are used in ANN and ABC, respectively. 
The question is how the accuracy of an ANN will be if 
the network is trained through Eq. (9) instead of Eq. (6)? 
Another alternative to repeatedly initialize an ANN on 
different weights is swapping the weights and changing their 
locations. Thus, within these two processes, the problem 
of trapping the ANN in the local minima can be solved. 
Figure-2 shows the process of the training an ANN through 
these weights updating and relocations in two simple loops. 
The outer loop is to initialize and update the weights for an 
ANN using the Eq. (9). Then, if the global minima are not 
obtained, the mutation or swapping weights will be tested as 
the inner loop. The size of the weightings set will be defined 
with the structure definition of an ANN.

The steps below show the pseudo-code of the mutation 
based ABC optimization for training ANN:
Step A: Through the predefined structure of the ANN (by which 

the structure should fit the problem that the ANN is designed 
for) the size of the initial set (weights) is dynamically defined.

Step B: Initializing the ABC algorithm through the steps that are 
shown in the section of ARTIFICIAL BEE COLONY. Get the 
first source of weights.

Fig. 1. Sliding and swapping elements.
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Step C: Do the mutation between the elements in the initial set 
of weights (get from Step B).

Step D: Initialize the ANN training, validation, and testing.
Step E: Compare the obtained performance with the previous 

one. Select the best.
Step F: Repeat Step C until no new offspring will be obtained. 

Repeat the B until no more sources are available.

VIII. Simulation and Experimental Works
Various experimental tests are carried out, and details of 

these can be described as follows:

A. BPNNs
The BPNN has three layers, where they are connected trimly 

through the neurons that lay at each layer, and the weights 
that lay between two neurons of two different layers. The first 
layer is input layer, which the number of neurons there should 
be equal to the number of the features that are selected as 
significant for a problem. The subsequent layer is the hidden 
layer, which enables the BPNN to achieve better performance. 
The last layer is the output, where the actual output is 
expected. Fig. 3 shows a typical structure of a BPNN (Ojha, 
et al., 2017). The structure of the BPNN for both datasets is 
not the same. For the local dataset, the number of features is 
13 (Rashid, et al., 2016); however, for the Pima dataset, the 
input features are 8 (UCI, Pima India Dataset, 2015).

This means that the input layer for both cases has 13 
and 8 neurons, respectively. For both cases, the neurons at 
the hidden layer are ,10 and at the output layer is one. The 
only difference in both structures is the number of neurons 
at the input layer. Therefore, the set of initial weights and 
biases will be different too (151 for local dataset and 101 for 
Pima dataset). The training function that used by this work is 
“trainlm” function.

The activate function proposed for neurons in the hidden 
layer structure is sigmoid function. The neuron at output 
layer has a linear activate function.

The process of ANN’s training has been tested in three 
different situations. The first is training ANN normally, which 
means updating the weights of the ANN per Eq. (6). The 
second situation is forcing the proposed ANN to update their 
weights and bias values per Eq. (9), which is the equation 
that used by ABC algorithm. The last scenario is the same as 
the second scenario; however, the positions of the initialized 
weights in the second scenario will be changed (swapped) 
based on the steps of GA. For all scenarios, the performance 
indicator measured is calculating the accuracy rate based on 
the true and false classification rates.

B. Normal Training of BPNN
“Trainlm” is the most common training function used 

in BPNN. It is also known as the Levenberg-Marquardt 
optimization algorithm (Priddy and Keller, 2005). The main 
target of this learning function is to train the network until a 
goal is achieved through the adjustment of the weights’ values 
that initialized the network. Through this learning process, 
the BPNN minimizes the errors that obtained at output layer. 
The training process of the BPNN terminates immediately 
when the goal is obtained. However, the obtained goal 
is not guaranteed to be optimal, as the BPNN depends on 
gradient descent method. Another factor that terminates the 
training is the number of failure validation checks. The BP 
algorithm stops training when the validation check reaches 
the predefined maximum number. This situation of BP is 
an indicator of trapping into a local problem, where no 
performance improvements can be achieved as the training 
directs the network to the worst situation of learning.

BPNN starts to find solutions from an initial point and 
continues until the steepest point (a point down toward the 

Fig. 2. The process of mutation artificial bee colony training of artificial neural network.
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optimum minimization). Two parameters affect the training 
of the BPNN. The first is called learning rate, in which the 
value is ranged between zero and one. A small value increases 
the iteration number, and a large value avoids the BPNN to 
find the optimum solution. To address that, this work tests 
the training of the BPNN with two datasets. For each dataset, 
the network has been initialized with 300 initial sets. Each 
set has w number of weights and b number of bias values. 
This work needs to initialize the proposed BPNN 300 times, 
and each time the initial weights have a different number.

The performance of the BPNN for both dataset and for each 
set of initial weights will be recorded. Then, the minimum 
and maximum performance for each dataset will be selected 
and compared, as shown in Table I. Table 1 also shows the 
CPU time, which measured by iterations, for both datasets. 
This performance indicates that the network has found a 
solution. However, it is not clear whether the solution is 
optimum. Nevertheless, Fig. 4 makes clear that the no further 
improvement can be obtained from that solution, as the 
validation check shows that training is going in the wrong 
direction. Even more, the gradient degree at the same epoch 
(iteration = 8) is going up, which confirms trapping the network 
into a solution where no better solution could be reached.

Fig. 5 shows the performance of a BPNN that normally 
trained with 300 different sets of the initial weights. The 
network starts each time training with an initial set of weight 
and bias values (1 × 151), which obtained randomly.

Normally, when the BPNN enters the training phase, 
the values of the weights and the biases will be randomly 
initialized in the range of −1, +1. The figure shows numerous 
solutions, which obtains when the initial weight has been 
changed. The figure also explains the impact of the initial 
weight on the process and the direction of the training phase 
of the BPNN. This means that the BPNN can achieve better 

learning if the weights and biases are initialized with proper 
values. However, the BPNN has no ability to change the 
initial values of weights and biases after the training phase 
begins. Therefore, the BPNN cannot change the direction of 
learning when the network has been initialized with improper 
values of weights and biases.

To overcome this problem, BPNN should be able to find 
a proper set of weight and bias values among available 
alternatives.

Practically, researchers follow the K-fold method (Kohavi, 
1995) to determine the best solution or the optimal average of 
the obtained solutions. They run the training phase of a BPNN 
several times. With each run, the accuracy of the network 
will be preserved. Then, after K-fold, either the best accuracy 
will be selected or (in most cases) the average of available 
solutions will be calculated. With such a process, it is not 
guaranteed that the best solution is the optimum, because there 
might exist a set of weights and biases that makes BPNN 
yield higher accuracy than that obtained through the K-fold 
method. Therefore, with such a process there is no guarantee 
that the best solution found is the optimum solution.

C. ABC based BPNN training
The core of the training in BPNN is updating the weights 

to minimize errors at the output stage. To achieve this, the set 

Fig. 3. Typical structure for backpropagation neural network (Priddy and Keller, 2005).

TABLE I
BPNN performance with normal training

Datasets Performance (MSE) CPU time

Best Worst 

Pima 0.1324 0.1856 23.2
Local data 0.1298 0.1926 95.4
BPNN: Back propagation neural network
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of initialized weights of the network will be updated based 
on (6). The network uses only one set of initial weights and 
based on the error rate at the output stage, and the learning 
rate the new set of weights will be calculated for the next 
round of training. This means that only one set of weights 
is utilized in the training process. The idea of involving 
the ABC algorithm in this work is for utilizing various 
sources (sets) of weights as initialized weight, where the 
BPNN can start with. It is a kind of collaboration between 
these two techniques to find out the perfect set of weights 
that directs BPNN to find the perfect (optimal) solution. 
The main changes on the process of the weight updating 
have been presented in this work, which, are initializing the 
weight approximately300 times. As a result, each time the 
process of updating the weight is going on through the Eq. 
(9) instead of Eq. (6). Fig. 6 shows the training performance, 
which becomes more stable than that found in Fig. 5. The 
local minima solution that obtained through this weight 
initialization and updating was not found in the obtained 
performance when the network trained normally.

ABC can serve BPNN with finding the proper set of 
weights and biases value among the n numbers of the 
population. However, there is a possibility of getting a better 
solution than the combination of the BPNN with ABC would 
do.

All elements in the sets have the same index during 
training a BPNN with ABC. The question is about the 
possibility of improving the accuracy of a BPNN when an 
element with an index of (i,j) can be swapped with another 
element that has an index (i±n,j±n) when n≠0.

To test the impact of mutation the weight’s indexes 
on the performance of the BPNN, this article checks the 
performance of the network with a single set of weights (1 
× 81) for the local dataset. As mentioned in Section 5, the 
sliding window is shifting by one element each time with 
doing the mutation on two elements. Accordingly, each 
single set of weights that have (1 × 81) dimension can be 
used to generate 80 different sets that are having the same 
elements of the mother set. However, in each iteration, the 
elements will be in different indexes. Fig. 7 shows that a 

Fig. 4. Failed validation for better solution obtaining.

Fig. 5. Performances of normal trained Backpropagation neural (local dataset).
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set of weights can be used to generate different offspring, 
and with each, the network gives a specific performance. 
As a set of weights which has been mutated, based on the 
process explained in Section 5, 81 sets of weights have 
been obtained. Then, each set has been used to initialize 
the BPNN. After that, only one observation is used to test 
the network performance, with a change of offspring on 
that original set of weights. Results show that different 
performances have been obtained due to the change of the 
indexes of the elements inside the set weight just for a 
single observation. From those performances, and based on 
the concept of the ABC algorithm, the best performance can 
be selected as the global minima for that observation.

For the Pima dataset, the above-mentioned procedure and 
what has been illustrated in Fig. 7 will be repeated. However, 

the number of the offspring, in this case, will be 51, as the 
number of input attributes will be reduced to eight.

Fig. 8 shows the 51 performances that have been obtained 
for observation with each offspring weight. Considering the 
locally prepared dataset, the training performance based on 
501 local observations can be illustrated as shown in Fig. 9.

This research article assesses the performance of the 
network with four parameters (CPU time, number of 
epochs, MSE, and Accuracy) for testing the impact of 
mutation of the weight’s indexes on the performance of 
the BPNN, the workstation used for the experimentation 
was equipped with a 2.5 GHz Core-i5 processor and 4-GB 
of RAM. The simulations are carried out using MATLAB 
2013a software. We employed two different data sets to 
check the impact of the proposed approach of this work on 

Fig. 6. Backpropagation neural network training based on artificial bee colony source (weights) initializing and updating.

Fig. 7. The 81 offspring of a weight set with different performance.
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the performance measures. We applied four criteria to three 
methods: ANN alone, ANN with ABC optimization, and 
ANN-ABC with weight mutation. Tables II and III show 
the performance measures of the tests on ANN, ANN-
based ABC and ANN-based ABC with weight mutation 
for both local and Pima datasets, respectively. The tests 
show that accuracy is improving with the change of weight 
initialization of the BPNN. The normal initialization cannot 
improve the accuracy of the trained BPNN within a wide 
range. The improvement just recorded for a few points of 
a percent.

IX. Conclusion
It is a fact that BPNN can give different performances 

when initialized with different values of weights. This means 
that changing the values of weights for a BPNN affects the 
performance of that network. However, if a network initializes 
with same values of weights, it gives the same performance 

Fig. 8. The 51 offspring of a weight set for Pima dataset with different performances.

Fig. 9. Network training with 501 observations (each with 91 offspring).

TABLE II
Testing the approach with local dataset

Algorithms/performance 
measure

ANN ANN-based ABC ANN-based ABC with 
weight mutation

CPU 76.2 123.6 149.4
Epoch 500 1000 1000
Error 0.132 0.0047 0.0013
Accuracy% 93.2 96.11 98.38
ANN: Artificial neural network, ABC: Artificial bee colony

TABLE III
Testing the approach with pima data set

Algorithms/performance 
measure

ANN ANN-based ABC ANN-based 
ABC with weight 

mutation
CPU 23.2 95.5 113.1
Epoch 1000 1000 1000
Error 0.197 0.09 0.0045
Accuracy% 89.99 94.77 97.32
ANN: Artificial neural network, ABC: Artificial bee colony
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if the training process is repeated for unlimited iterations. 
The target of changing the weight’s values for a network is 
optimizing the performance (avoiding local optima). Many 
algorithms have been combined with BPNN, such as ABC, 
for maximizing the performance. With such algorithms, sets 
of initial weights are randomly generated, and the best set 
of weights will be selected based on the best performance 
obtained. We investigated the impact of the indexes of each 
weight inside the initialized set on the BPNN performance. 
Through optimized algorithms, weights are initialized statically 
(no changes in their indexes have been made). When an index 
of weight inside the initialized set changes, the performance 
is also changed, as shown in Figs. 7 and 8 with Tables II and 
III. This means that there is a possibility of getting better 
performances if the indexes of weights are changed.

The figures and tables show that initializing weights 
randomly as done by ANN performs less efficiently and 
accurately than ANN combined with ABC. However, when 
the combination of ANN and ABC supported by index sliding 
of GA, the resulting performance is optimal. It is not the 
impact of changing the sources (as in the ABC algorithm), it is 
instead the impact of changing the indexes of the weights too. 
With such combinations, ABC can force the training process 
of any BPNN to become more optimal in classification.

Another important problem solved in this article is 
overfitting of ANN training. We tested the approach with 
two different datasets, which means the proposed approach is 
generalized for the different dataset. This also means that our 
approach overcomes the problem of overfitting.
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