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Abstract—Static code analysis plays a pivotal role in improving 
software quality, security, and maintainability by detecting 
vulnerabilities, errors, and programming issues in source code 
without executing it. Recent advancements in artificial intelligence, 
especially the development of large language models (LLMs), 
such as ChatGPT, have enabled transformational opportunities 
in this domain. Thus, it is essential to explore this emerging field 
of research from many perspectives. This systematic survey 
focuses on the use of LLMs for static code analysis, detailing their 
applications, advantages, contexts, limitations, etc. The study 
examines research papers published on the topic from reputable 
literature databases to answer several research questions 
regarding the state-of-the-art use of LLMs in static code analysis. 
In addition, different research gaps and challenges were identified 
and discussed alongside many directions. The results of this study 
demonstrate how LLMs can enhance static code analysis and 
address existing limitations, paving the way for developers and 
researchers to employ LLMs for a more affordable and effective 
software development process.

Index Terms—Large language models, Software metrics, 
Software quality, Static code analysis.

I. Introduction
Static code analysis is a crucial activity in software 
development, which is aimed at detecting possible 
vulnerabilities, defects, or other issues related to code quality 
without executing the program (Louridas, 2006). Traditional 
static analysis techniques are based on rules and heuristics 
defined to analyze the source code; however, they often face 
challenges with modern complex systems and new coding 
styles. Static code analysis is essential in several domains 
including software engineering, cybersecurity, and the 
Internet of Things (IoT, henceforth). For example, in software 

engineering, static code analysis is critical for the prompt 
resolution of potential code threats, which in turn makes it 
easy to develop software programs that are competent, high-
quality, reliable, and error-free (Ramamoorthy, et al., 2024). 
In the area of cybersecurity, it helps locate and understand 
vulnerabilities in sensitive information systems, such 
as banking and healthcare systems (Hassan, Sarhan and 
Beszédes, 2024). In the field of IoT, where interconnected 
devices are used extensively in critical areas, such as 
healthcare, smart cities, and automated industry, the risk is 
higher than ever. With the diverse resource and connection 
constraints, static code analysis ensures that IoT applications 
meet high performance and security needs. Static code 
analysis helps to a system’s robustness and effectiveness, 
thereby enhancing the overall safety and efficiency of 
contemporary digital ecosystems (Kotenko, Izrailov and 
Buinevich, 2022).

Large language models (LLMs, henceforth), such as 
ChatGPT and many others have triggered a new interest in 
their application for improving static code analysis. LLMs 
have a unique feature that allows them to understand source 
code because they are trained on extensive code and natural 
language datasets. In addition to that, LLMs can recognize 
many different types of code issues, especially those that 
require an in-depth comprehension of context or intricate 
reasoning. Furthermore, by synthesizing information from 
multiple code snippets, LLMs may be able to recognize 
several issues that offer a great deal of information on the 
code’s readability, maintainability, and compliance with 
software design paradigms. On the other hand, traditional 
methods, such as abstract syntax tree (AST, henceforth) 
analysis, data flow analysis, and static symbolic execution 
may not be able to identify certain types of faults compared 
to LLMs.

By incorporating more advanced artificial intelligence 
(AI) models, especially LLMs, there is a remarkable 
transformation in the methods of software development in 
the fast-evolving field of software engineering. Generative 
AI technologies are widely adopted because they have 
clear advantages, such as high productivity, high accuracy, 
and rapid development cycles. Industry research suggests 
that by 2027, around 70% of professional software 
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developers will use AI-assisted coding tools for standard 
programming activities, such as code creation, debugging, 
and optimization (Sikand, et al., 2024). The use of LLMs 
for static code analysis, or in combination with traditional 
methods, holds great potential for developing new tools 
in the software industry. Given their knowledge of 
natural and programming languages, LLMs can find bugs, 
provide specific suggestions in code, and even improve a 
developer’s productivity.

This systematic survey represents the first comprehensive 
review focused exclusively on LLM-based static code analysis. 
Through rigorous examination of many related studies, the 
survey provides insights and establishes a novel taxonomy for 
this rapidly evolving field, while identifying critical limitations 
and proposing actionable research directions.

Summing up, the key contributions of this survey are 
listed below:
•	 First dedicated survey: This survey provides the first 

dedicated, systematic examination of LLMs for static code 
analysis, establishing a comprehensive foundation for 
understanding their applications, capabilities, and limitations 
in this specific domain. Unlike broader surveys of LLMs in 
software engineering, our work focuses exclusively on static 
code analysis tasks.

•	 Systematic methodology: This survey concentrates on the 
research that were recently published on the topic by using 
systematic techniques for inclusion and exclusion of the 
criteria set by the clearly articulated questions.

•	 Identification of critical challenges: This survey highlights 
the limitations of LLMs in static analysis, such as (high 
false positive rates, context window constraints, and 
computational costs as key adoption barriers).

•	 Statistical synthesis of LLMs applications in static code 
analysis: The survey provides a comprehensive statistical 
synthesis of prior research, including the prevalence of 
LLMs, such as ChatGPT-4 and its alternatives, as well as 
traditional static code analysis tools that have been widely 
used. It also covers programming language distribution, 
software engineering tasks coverage, evaluation metrics, 
and prompting strategies in significant detail.

•	 Future research directions: This survey identifies many 
possible research directions that need to be studied and 
addressed by researchers. Thus, this work serves as a quality 
reference for researchers and developers, bridging the gap 
between LLMs and static code analysis while setting a 
foundation for future advancements.

This systematic survey was prompted by the reasons listed 
below:
•	 Traditional static code analysis constraints: Traditional 

approaches, such as AST analysis, data flow analysis, and 
symbolic execution often fail to detect coding errors and 
coding quality issues as they are not designed to understand 
codes. Such techniques may be enhanced by LLMs which 
offer improved comprehension and reasoning capabilities 
over the code.

•	 LLMs for static code analysis: The use of LLMs in coding 
activities is rapidly increasing, making it necessary to 
evaluate their effectiveness in performing static code 
analysis in terms of functional correctness, security, and 
maintainability. A survey would facilitate the evaluation 
of their strengths, limitations, and potential areas for 
development in this area.

•	 Gaps in existing research: A significant deficiency exists in 
survey research that particularly examines the application 
of LLMs in static code analysis. A systematic survey would 
address this gap by aggregating insights on how LLMs might 
improve static code analysis and pinpointing areas for further 
advancement.

The remainder of this survey paper is structured as follows: 
Section II presents the related works for this survey. Section 
III describes the details of the research methodology that 
has been used to conduct this survey systematically. Section 
IV presents the results and outcomes of this survey. Section 
V presents the future directions of research in the selected 
topic. Section VI outlines threats to validity and the measures 
taken to address them. Finally, the conclusions of the survey 
are provided in Section VII.

II. Related Works
The use of LLMs in software engineering has transformed 

several research areas, including static code analysis, code 
creation, optimization, testing, maintenance, and security. 
This section summarizes the progress and related works 
that have been performed in the literature divided in several 
categories, as follows:

A. Code Generation and Optimization
The application of LLMs to the generation and completion 

of code has gained significant attention in recent years. 
The authors (Zheng, et al., 2023a) offer a comprehensive 
review of the development of LLMs for code generation 
and their astounding success in this task. In addition, they 
discussed the impact of model size and the quality of data 
on code generation, and called for more comprehensive 
ways to enhance these models. In (Zheng, et al., 2023b), 
the incorporation of LLMs into software engineering and 
their efficiency in code summarization or repair tasks were 
discussed significantly. The study highlights the innovative 
changing possibilities of LLMs in boosting developer 
efficiency and automating mundane coding tasks, while 
calling for further research to solve issues, such as model 
explainability and optimization for specific tasks. LLMs have 
proven to be useful in the area of code optimization as well 
as by increasing the overall efficiency of the code, such as in 
the cases of execution duration and memory use. The authors 
(Gong, et al., 2025), provide a systematic literature review 
pinpointing different trends and obstacles in LLMs-based 
code optimization. The paper emphasizes the superiority 
of general-purpose LLMs, such as GPT-4 for general 
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optimization tasks, although other models excel in specific 
optimization tasks. The primary issues include reconciling 
model complexity with practical applicability and attaining 
cross-linguistic generalizability. The authors suggest further 
research avenues, including model reduction and multilingual 
optimization, to improve the efficiency and resilience of 
LLM-based code optimization methods for more dependable 
and scalable solutions.

B. Software Testing and Debugging
The application of LLMs in automating software testing 

activities, including test case development, program repair, 
and bug detection, has been thoroughly investigated in 
many studies. The authors (Wang, et al., 2024), conducted 
a comprehensive review on the applications of LLMs in 
activities, such as unit test case development and test oracle 
creation. While noting the effective capabilities of LLMs for 
the generation of diverse test inputs and their use in testing, 
they identified the obstacles that hinder achieving appropriate 
coverage and the test oracle challenge. They also discussed 
automating and optimizing software testing and debugging 
processes with the novel capabilities of LLMs while noting 
the imperfection of existing studies, such as the lack of 
integration into actual developer’s work and lack of tools for 
deeper evaluation.

C. Software Maintenance and Management
LLMs have been put to use for the automation of several 

tasks within software maintenance and management, 
including rewriting code, creating documentation, and 
managing the software’s lifecycle. The authors (Zhang, 
et al., 2023a), discussed the impact of LLMs on coding 
tasks, such as code creation, summarization, and program 
repair. The author vividly describes the increasing LLM-
based software engineering research, driven by deep learning 
and the availability of open-source code on repositories. The 
authors (Hou, et al., 2023), conducted a systematic review 
and identified 85 distinct software engineering jobs in which 
LLMs have demonstrated efficacy, notably in software 
development and maintenance. These studies provide 
evidence that different tasks can be automated using LLMs, 
which drives software quality improvement, but at the same 
time creates new challenges, such as data dependence, model 
size, and generalization. The authors suggest the focus should 
move toward developing domain-oriented LLMs, along with 
more detailed evaluation processes.

D. Security and Vulnerability Detection
The utilization of LLMs for detecting and addressing 

security issues in software systems is a rapidly growing 
area of study. The authors (Chen, et al., 2024) provided a 
systematic analysis that classifies the types of attacks and 
how LLMs can be used to detect them. Furthermore, they 
provided several defense strategies that can be used to prevent 
such attacks. The authors (Zhou, et al., 2024) conducted a 
literature review on the employment of LLMs for discovering 

and fixing software vulnerabilities. This study shows that 
encoder-only models, such as CodeBERT, performed best for 
detection tasks, while decoder-only models, such as GPT-4 
excelled at repair tasks. These papers jointly highlight the 
ability of LLMs for enhancing software security.

E. Natural Language Processing in Software Engineering
Like many domains, the intersection of natural language 

processing (NLP, henceforth) and software engineering has 
been very promising with respect to research for different 
activities, such as code summarization, code translation, 
and even code repair. The authors in (Zhang, et al., 
2023b), provided a detailed understanding of processes 
related to coding by reviewing work on language model-
based processing of code, including modern changes that 
improve performance, such as moving from statistical 
models to pre-trained transformers and LLMs. The 
research focuses on the efficiency of LLMs, such as Codex 
and GitHub Copilot, within the scope of code generation 
and comprehension. Moreover, it tackles issues, such as 
the need for thorough evaluation strategies, benchmarks, 
and the need for better practical features for codes. The 
authors in (Salem, et al., 2024), investigated the role of 
language models in the intersection of spoken languages 
and computer languages, particularly in automated 
processes that include writing of code, code refactoring, 
and debugging. Such studies together demonstrate the 
promise the application of LLMs has for changing 
the workflow of software engineering to foster higher 
productivity of software developers and enable the 
automation of complex processes.

F. Sustainability and Reusability in Software Engineering
The environmental impact and the sustainability of using 

LLMs in software engineering have also been addressed 
in many studies. The authors (Hort, Grishina and Moonen, 
2023), examined the diffusion of software source codes and 
other studies artifacts and found out that only 27% of relevant 
studies provide sufficient artifacts for reuse. The paper 
highlights the significant energy consumption associated with 
training such large models and argues for more transparency 
regarding hardware specifications and training durations. The 
authors advocate for the dissemination of pre-trained models 
to mitigate unnecessary training and foster sustainable 
methods in software engineering. This research highlights the 
necessity of mitigating the environmental effect of LLMs and 
enhancing model reusability to promote sustainability in the 
domain.

In recent years, the incorporation of LLMs into software 
engineering has attracted considerable research interest, 
with various surveys investigating their applications in 
tasks, such as code generation, optimization, and testing. 
However, this systematic survey differentiates itself by 
providing a concentrated, thorough, and rigorous analysis of 
LLMs specifically for static code analysis, highlighting their 
applications, challenges, and other aspects often overlooked 
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in general surveys. Thus, this survey represents a significant 
contribution to the field of software engineering, particularly 
in the niche area of static code analysis. To achieve this, the 
survey follows a systematic approach making the analysis of 
the related works to be relevant and accurate, which in return 
increases the trustworthiness of the obtained results. Thus, 
this study can be considered as the most comprehensive and 
up-to-date study on the use of LLMs in static code analysis, 
which is beneficial for developers and researchers alike.

III. Research Methodology
This survey follows established guidelines for conducting 

systematic literature surveys which were presented in 
(Petersen, Vakkalanka and Kuzniarz, 2015). Fig. 1 illustrates 
the five steps in the study’s process. The first step defines 
the purpose and scope of the study and defines its objectives 
along with the research questions (RQs) to be answered. 
The second step termed the search strategy, focuses on 
devising a method for searching relevant articles related to 
the topic under investigation. In the third step, the identified 
papers are screened and filtered. The fourth step involves 
data extraction, whereby the selected papers are reviewed 
and relevant data that meets the objectives of the research 
is collected. The results are documented during the fifth step 
of the process. Subsequently, the following sections explain 
these steps in detail.

A. Identification of Research Objectives and Questions
1. Research objectives: This systematic survey seeks 

to examine the published works on involving static 
code analysis with LLMs by searching, assessing, and 

categorizing state-of-the-art contributions. This is done so 
that developers and researchers can understand the answers 
to particular questions and subsequently enhance their efforts 
in development and research.

2. RQs: Several primary RQs have been defined and answered 
in this survey. Each RQ deals with a different dimension of 
the topic of the study, as follows:
•	 RQ1: What are the most frequently used LLMs for static 

code analysis tasks?
•	 RQ2: What are the traditional static code analysis tools 

that are used to assess the quality of LLMs for static 
code analysis?

•	 RQ3: What are the major programming languages used 
in research for specific static code analysis tasks that 
involve the use of LLMs?

•	 RQ4: What is the range of software engineering 
activities that have been targeted by static code analysis 
with LLMs?

•	 RQ5: Which evaluation metrics are most used in 
quantifying the accuracy and utility of LLMs in static 
code analysis?

•	 RQ6: What prompt design strategies are most effective 
for optimizing LLMs performance in static code 
analysis?

•	 RQ7: What are the common challenges and limitations 
in leveraging LLMs for static code analysis?

B. Search Strategy
1. Literature sources: Well-known standard online databases, 

such as IEEE Xplore, Elsevier Science Direct, and ACM 
Digital Library. that index most of the papers relevant to 
the scope of this survey were selected as literature sources.

Fig. 1. The employed survey process.



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 255

2. Search string: Using the database literature sources, the 
following search string was used to locate the papers relevant 
to this survey:

 “(Generative AI OR LLM OR Large Language Model) 
AND (static code analysis)”

All terms of the search string were linked with each other 
using Boolean operators (Brereton, et al., 2007). The Boolean 
“OR” was employed to link synonyms or related terms that 
refer precisely or broadly to different aspects of the study topic 
and the Boolean “AND” was used to link the major terms.

C. Paper Selection
1. Paper inclusion/exclusion criteria: A set of inclusion and 

exclusion criteria were established and employed to decide 
whether a paper is relevant to this study or not. These criteria, 
which are listed below, have been applied based on the titles, 
abstracts, and full-text reading of the collected papers.
a. Inclusion criteria:
•	 Papers related directly to static code analysis using 

LLMs.
•	 Papers published over the past 2 years (2023–2024). 

According to our search and exploration of the literature, 
papers on static code analysis using LLM started in 
2023.

b. Exclusion criteria:
•	 Papers not published in English
•	 Papers not peer reviewed (e.g., grey literature)
•	 Papers not published electronically
•	 Papers that are duplicates of other papers
•	 Papers without clear results and evidence.

2. Snowballing: To reduce the risk of missing some relevant 
papers, the snowballing search technique (Wohlin, 2014) 
was applied to the remaining papers. In snowballing, the 
reference list of each paper is checked with the inclusion/
exclusion criteria. Then, the paper selection process is 
applied recursively to the papers that have been found. Fig. 2 
shows the number of included and excluded papers at each 
stage of the paper selection process.

All the papers used in this study are listed below: (Sikand, 
et al., 2024), (Amburle, et al., 2024), (Li, et al., 2023), 
(Rahmaniar, 2024), (Hajipour, et al., 2024), (Wadhwa, 
et al., 2024), (AlOmar and Mkaouer, 2024), (Yuan, et al., 
2024), (Mahyari, 2024), (Fang, et al., 2023), (Mathews, 
et al., 2024), (Li and Shan, 2023), (Hossain, et al., 2024), 
(Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar 
and Shiaeles, 2023), (Guo, et al., 2023a), (Ságodi, Siket and 
Ferenc, 2024), (Venkatesh, et al., 2024), (Moratis, et al., 
2024), (Souma, et al., 2023), (Pearce, et al., 2023), (Bajpai, 
et al., 2024), (Yin, Ni and Wang, 2024), (Bairi, et al., 2024), 
(Akuthota, et al., 2023), (Ignatyev, et al., 2024), (Gupta, 
et al., 2023), (Liu, Yang and Liao, 2024), (Villmow, et al., 
2023), (Jesse, et al., 2023), (Guo, et al., 2023b), (Di, et al., 
2023), (Haindl and Weinberger, 2024), (Ardito, Ballario and 
Valsesia, 2023), (Purba, et al., 2023).

Fig. 2. Results of the paper selection process.

D. Data Extraction and Analysis
To address the RQs, data were taken from the chosen 

papers and thoroughly examined. An Excel document with 
several fields was made, especially for this study to include 
the extracted data. As presented in Table I, each field contains 
a data item and a value. It is worth mentioning that the Excel 
document can be accessed by clicking on the link given here: 
Extraction form (Google Drive).

IV. Results
All of the papers selected were thoroughly examined to 

address the RQs that were identified for this survey. Based 
on the results, each RQ is represented by a brief title and is 
covered in the next subsections.

A. Popular LLMs for Static Code Analysis (RQ1)
Table II presents the most used LLMs in research. It 

is clear that OpenAI’s models, such as ChatGPT-4 and 
ChatGPT-3.5-turbo, lead the academic landscape, with 
ChatGPT-4 being referenced in 16 studies, underscoring 
its versatility and widespread adoption. ChatGPT models, 
particularly ChatGPT-4 and ChatGPT-3.5-turbo, are popular 
LLMs because they are the best performers at tasks, are easy 
to reach through OpenAI APIs, and have better contextual 
understanding and reasoning. With researchers, working on 
AI-powered static analysis and software engineering, they 
remain a top choice especially when economical options, 
such as ChatGPT-3.5-turbo are available (Gupta, et al., 
2023; Acl, 2024). This is because the researchers can find 
fairly priced options for a variety of tasks including bug 
detection, code generation, and even vulnerability scans. 
LLMs are known to have a wide range of applications in 
static code analysis. They aid in enhancing error detection, 
warning verification, as well as static analysis test 
translations across programming languages. LLMs are also 
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TABLE I
Data Extraction Form

Data item Value RQs
Paper number Paper ID. None
Paper title Title of the study. None
Used LLMs LLMs used in the studies. RQ1
Static code 
analysis tools

Static code analysis tools used in the studies with 
LLMs for code evaluation.

RQ2

Programming 
languages

Programming languages involved in the studies 
utilizing LLMs for static code analysis.

RQ3

Type of tasks Tasks of static code analysis performed in the 
studies using LLMs.

RQ4

Evaluation 
metrics

Metrics used to assess the effectiveness of LLMs 
for static code analysis.

RQ5

Prompt designs Strategies of effective prompt designs for LLMs 
used in static code analysis tasks.

RQ6

Limitations and 
challenges

Limitations and Challenges of performing static 
code analysis using LLMs.

RQ7

LLMs: Large language models, RQs: Research questions

Table II
Popular LLMs for Static Code Analysis

S. No. LLM Corresponding papers Total papers
1. ChatGPT-4 (Amburle, et al., 2024), (Li, et al., 2023), (Rahmaniar, 2024), (Hajipour, et al., 2024), (Wadhwa, et al., 2024), (AlOmar 

and Mkaouer, 2024), (Sikand, et al., 2024), (Yuan, et al., 2024), (Mahyari, 2024), (Fang, et al., 2023), (Mathews,  
et al., 2024), (Li and Shan, 2023), (Hossain, et al., 2024), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar 
and Shiaeles, 2023)

16

2. ChatGPT-3.5-turbo (Guo, et al., 2023a), (Mahyari, 2024), (Fang, et al., 2023), (Ságodi, Siket and Ferenc, 2024), (Mohajer, et al., 2023), 
(Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024), (Omar and Shiaeles, 2023), (Moratis, et al., 2024)

9

3. ChatGPT-3.5 (Amburle, et al., 2024), (Souma, et al., 2023), (Hajipour, et al., 2024), (Yuan, et al., 2024), (Pearce, et al., 2023),  
(Li and Shan, 2023), (Hossain, et al., 2024)

7

4. CodeLlama (Amburle, et al., 2024), (Fang, et al., 2023), (Bajpai, et al., 2024), (Li and Shan, 2023), (Yin, Ni and Wang, 2024),  
(Omar and Shiaeles, 2023)

6

5. ChatGPT-2 (Bairi, et al., 2024), (Pearce, et al., 2023), (Akuthota, et al., 2023) 3
6. GitHub Copilot (Rahmaniar, 2024), (AlOmar and Mkaouer, 2024), (Ságodi, Siket and Ferenc, 2024) 3
7. CodeGen (AlOmar and Mkaouer, 2024), (Ignatyev, et al., 2024), (Venkatesh, et al., 2024) 3
8. ChatGPT-3 (Bairi, et al., 2024), (Wadhwa, et al., 2024) 2
9. Mixtral (Li, et al., 2023), (Bajpai, et al., 2024) 2
10. Google Bard (Rahmaniar, 2024), (Gupta, et al., 2023) 2
11. Codex (Liu, Yang and Liao, 2024), (Ignatyev, et al., 2024) 2
12. Polycoder (Liu, Yang and Liao, 2024), (Ignatyev, et al., 2024) 2
13. DeepSeek-Coder (Bajpai, et al., 2024), (Yin, Ni and Wang, 2024) 2
14. WizardCoder (Yin, Ni and Wang, 2024), (Omar and Shiaeles, 2023) 2
15. Mistral (Yin, Ni and Wang, 2024), (Omar and Shiaeles, 2023) 2
16. ChatGPT-1 (Bairi, et al., 2024) 1
17. StarCoder (Amburle, et al., 2024) 1
18. CodeQL (AlOmar and Mkaouer, 2024) 1
19. CodeFuse (Pearce, et al., 2023) 1
20. AI21 Jurassic-1 (Liu, Yang and Liao, 2024) 1
21. BERT (Villmow, et al., 2023) 1
22. CODEDOCTOR (Jesse, et al., 2023) 1
23. INCODER (Jesse, et al., 2023) 1
24. GRAPHCODEBERT(Jesse, et al., 2023) 1
25. StarChat-Beta (Fang, et al., 2023) 1
26. Phi-2 (Yin, Ni and Wang, 2024) 1
27. OpenAI Davinci (Venkatesh, et al., 2024) 1
28. Vicuna (Omar and Shiaeles, 2023) 1
LLMs: Large language models

known to enhance precision and efficacy by reducing false 
positives and false negatives in bug detection, malicious 
code detection, and even vulnerability detection. Their 
scope of usage expands within programming education for 
real-time error checking and explanation purposes and even 

cybersecurity for aiding in the detection and remediation of 
vulnerabilities.

Fig. 3 displays the companies that contributed toward 
LLMs development which suggests the scope of activity 
and engagement. OpenAI is leading the list by boosting 
8 LLMs, much higher than the other prominent companies 
including Google, Hugging Face, Meta Microsoft, and 
Salesforce who have only made 2 LLMs each. This highlight 
gap clearly indicates openness toward capital and optimism 
toward supporting the research and development of LLMs. 
Hence, further solidifying the statement of America being 
proactive on AI research. The data reveals the rapid changing 
competitive landscape of LLMs development where OpenAI 
holds the front line in production, and the other groups have a 
significantly lesser but steady presence. This gap could mean 
a change in primary research objectives, budgetary spending, 
or competitive practices for progressing AI technology.

B. Baseline Static Code Analysis Tools (RQ2)
Table III presents the use of different static code analysis 

tools outlined in the academic articles, with a particular focus 
on their application and frequency. Programming mistake 
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Table III
Static Code Analysis Tools

S. No. Tool Corresponding papers Total 
papers

1. PMD (Souma, et al., 2023), (Sikand, et al., 2024), 
(Guo, et al., 2023b)

3

2. SonarQube (Guo, et al., 2023b), (Mohajer, et al., 2023) 2
3. Simian (Souma, et al., 2023) 1
4. Custom static 

analysis tool
(Di, et al., 2023) 1

5. Static analyzer (Haindl and Weinberger, 2024) 1
6. PyTorch (Haindl and Weinberger, 2024) 1
7. LLB (Li and Shan, 2023) 1
8. FindBugs (Guo, et al., 2023b) 1
9. Coverity (Guo, et al., 2023b) 1
10. TECA (Guo, et al., 2023b) 1
11. Rust-code- 

analysis
(Ardito, Ballario and Valsesia, 2023) 1

12. CodeQL (Mohajer, et al., 2023) 1
13. Infer (Gonzalez-Barahona, 2024) 1
14. PyCG (Omar and Shiaeles, 2023) 1
15. HeaderGen (Omar and Shiaeles, 2023) 1
16. TypeEvalPy (Omar and Shiaeles, 2023) 1

Fig. 3. Company contributing to large language models development.

detector (PMD, henceforth) emerges as the most widely cited 
tool, appearing in three papers, suggesting its effectiveness 
in code analysis and bug detection. SonarQube, cited in two 
papers, illustrates its capability in continuously monitoring 
of code quality. Simian, Static Analyzer, and Pytorch receive 
single mentions, reflecting their specialized use cases. More 
advanced tools, such as PyCG and HeaderGen indicate 
growing attention toward domain and language-specific static 
analysis, especially in Python and C++.

PMD is considered one of the most widely used static 
code analysis tools due to several critical factors. It 
covers a number of programming languages, such as Java, 
JavaScript, Apex, and PLSQL, which makes it very flexible 
and appropriate for a wide range of tasks. Another factor is 
that PMD is highly configurable which allows a great deal 
of customization enabling developers to create new rule sets 
or change existing ones to particular coding standards and 
best practices (AlOmar and Mkaouer, 2024). This flexibility 
ensures that each development team can adjust the processes 
according to their specific needs. In addition, PMD is 
available as an open-source tool which enables people to 

improve it and make it better and more sophisticated than 
ever. The ability to detect code duplication, dead variables, 
and potential bugs assists to improve the quality and longevity 
of the code. PMD also works with other popular build tools 
and IDEs, which makes it easy to use in various development 
environments. Together, all these factors combined with an 
active community and frequent releases increase PMD’s 
recognition as one of the best static code analysis tools.

C. Target Programming Languages (RQ3)
Table IV presents the focus of research regarding the 

target programming languages for static code analysis using 
LLMs. The Java language was noted more often than other 
languages, as it appeared in 22 of the examined papers, 
while Python appeared in 17 and the C language in 14. Other 
languages, such as C++ had a moderate representation, 10 
papers.

In contrast, languages, such as Swift, Kotlin, and Go 
appear in only 2 papers each, while niche or specialized 
languages, including Solidity, Ruby, Rust, Verilog, PHP, 
Objective-C, SQL, Perl, Scala, and R, are mentioned in 
just 1 paper each. These findings highlight the prominence 
of widely adopted languages, such as Java and Python in 
research contexts, particularly in leveraging LLMs for tasks, 
such as bug detection, vulnerability identification, and code 
comprehension through static code analysis. Java and Python 
are the most studied programming languages in static code 
analysis due to their widespread use, mature ecosystems, 
and suitability for analysis. Java’s prevalence in enterprise 
systems and Android development, coupled with Python’s 
dominance in data science, Machine Learning, and web 
development, ensures their relevance in improving code 
quality and security (Rahmaniar, 2024). Comprehensive 
static code analysis tools, including PMD and SonarQube 
for Java, as well as Pylint and Bandit for Python, bolstered 
by engaged communities and enormous resources, enhance 
both languages. The object-oriented structure and strong 
typing of Java enable correct interpretation and analysis of 
the program under consideration. In comparison, Python’s 
dynamic features create unique challenges that nurture the 
ingenuity of researchers. Furthermore, the active interest 
from industry and academia, underlines the importance 
of these programming paradigms for static code analysis 
research. The limited scope of representation of the other 
general languages or domain-specific languages suggests 
a reasonable avenue for subsequent research regarding the 
potential of LLMs in using them.

D. Common Static Code Analysis Tasks (RQ4)
Numerous tasks in the collected papers have been identified 

regarding the static code analysis and applied LLMs are 
presented in Table V. The greatest number of papers that is 
12, has been published in the area of security weaknesses 
and the attempts that are done to discover and resolve these 
issues in the code. Static behavior analysis and code quality 
estimation and control are fundamental parts of 10 papers 
that concern the understanding of program behavior and 
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TABLE IV
Programming Language used in Studies

S. No. Programming 
language

Corresponding papers Total Papers

1. Java (Amburle, et al., 2024), (Li, et al., 2023), (Souma, et al., 2023), (Rahmaniar, 2024), (Gupta, et al., 2023), (Di, et al., 
2023), (Wadhwa, et al., 2024), (Sikand, et al., 2024), (Yuan, et al., 2024), (Pearce, et al., 2023), (Mahyari, 2024), 
(Jesse, et al., 2023), (Ignatyev, et al., 2024), (Bajpai, et al., 2024), (Li and Shan, 2023), (Ságodi, Siket and Ferenc, 
2024), (Guo, et al., 2023b), (Ardito, Ballario and Valsesia, 2023), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), 
(Akuthota, et al., 2023), (Moratis, et al., 2024)

22

2. Python (Amburle, et al., 2024), (Souma, et al., 2023), (Rahmaniar, 2024), (Gupta, et al., 2023), (Di, et al., 2023), (Hajipour, 
et al., 2024), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Pearce, et al., 2023), (Liu, Yang and Liao, 
2024), (Guo, et al., 2023a), (Jesse, et al., 2023), (Fang, et al., 2023), (Hossain, et al., 2024), (Mohajer, et al., 2023), 
(Venkatesh, et al., 2024), (Omar and Shiaeles, 2023)

17

3. C (Amburle, et al., 2024), (Gupta, et al., 2023), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Liu, Yang and 
Liao, 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Villmow, et al., 2023), (Fang, et al., 2023), (Hossain, et al., 2024), 
(Guo, et al., 2023b), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

14

4. C++ (Wadhwa, et al., 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Jesse, et al., 2023), (Bajpai, et al., 2024), (Ságodi, Siket 
and Ferenc, 2024), (Guo, et al., 2023b), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

10

5. JavaScript (Souma, et al., 2023), (Rahmaniar, 2024), (Wadhwa, et al., 2024), (Mahyari, 2024), (Fang, et al., 2023),  
(Hossain, et al., 2024)

6

6. C# (Haindl and Weinberger, 2024), (Mahyari, 2024), (Bajpai, et al., 2024), (Mathews, et al., 2024) 4
7. Swift (Wadhwa, et al., 2024), (Mahyari, 2024) 2
8. Kotlin (Wadhwa, et al., 2024), (Mahyari, 2024) 2
9. Go (Mahyari, 2024), (Venkatesh, et al., 2024) 2
10. Solidity (Amburle, et al., 2024) 1
11. Ruby (Wadhwa, et al., 2024) 1
12. Rust (Wadhwa, et al., 2024) 1
13. Verilog (Liu, Yang and Liao, 2024) 1
14. PHP (Mahyari, 2024) 1
15. Objective-C (Mahyari, 2024) 1
16. SQL (Mahyari, 2024) 1
17. Perl (Mahyari, 2024) 1
18. Scala (Mahyari, 2024) 1
19. R (Mahyari, 2024) 1

TABLE V
Addressed Tasks in Academic Paper on Static Code Analysis using LLMs

S. No. Type of task Corresponding papers Total papers
1. Security vulnerability detection (Li, et al., 2023), (AlOmar and Mkaouer, 2024), (Liu, Yang and Liao, 2024), 

(Guo, et al., 2023a), (Villmow, et al., 2023), (Mathews, et al., 2024), (Li and Shan, 
2023), (Hossain, et al., 2024), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024), 
(Akuthota, et al., 2023), (Moratis, et al., 2024)

12

2. Static behavior analysis (Amburle, et al., 2024), (Di, et al., 2023), (Fang, et al., 2023), (Bajpai, et al., 2024), 
(Hossain, et al., 2024), (Guo, et al., 2023b), (Ardito, Ballario and Valsesia, 2023), 
(Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar and Shiaeles, 2023)

10

3. Code quality assurance (Souma, et al., 2023), (Di, et al., 2023), (Sikand, et al., 2024), (Yuan, et al., 2024), 
(Pearce, et al., 2023), (Jesse, et al., 2023), (Ságodi, Siket and Ferenc, 2024), (Guo,  
et al., 2023b), (Ardito, Ballario and Valsesia, 2023), (Mohajer, et al., 2023)

10

4. Bug detection (Gupta, et al., 2023), (Sikand, et al., 2024), (Liu, Yang and Liao, 2024), (Ignatyev,  
et al., 2024), (Bajpai, et al., 2024), (Purba, et al., 2023)

6

5. Syntax understanding (Amburle, et al., 2024) 1
6. Variable misuse detection (Haindl and Weinberger, 2024) 1
7. Adherence to green coding rules (Rahmaniar, 2024) 1
8. Logical reasoning in error detection (Hajipour, et al., 2024) 1
9. Identifying violations (naming conventions) (Jesse, et al., 2023) 1

the quality control standards, respectively. Six papers are 
dedicated to bug detection highlighting the ongoing approach 
of seeking errors in different phases of software development 
and correcting them.

There are relatively few studies looking at other more 
specific issues, such as understanding syntax, detecting 
variable misuses, and reasoning for errors. These suggest 
very specific research areas. It also shows research activities, 

such as compliance with the green coding initiative, breaches 
of naming conventions, and the reasoning logic behind 
error detection, all of which are performed by individual 
researchers. These definitional boundaries mark some of the 
newer and broader static code analysis challenges where 
researchers are exploring sustainable coding practices and 
improving sustainability and maintainability in software 
development. The complex nature of static code analysis 
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and its importance in various software engineering fields is 
exhibited in these different sets of tasks.

E. Evaluation Metrics (RQ5)
Table VI presents the common metrics used to evaluate 

the abilities of LLMs for static code analysis. Accuracy is 
the most often reported metric, cited in 11 papers, which 
illustrates its importance in measuring the effectiveness 
of these AI models. Several papers refer to the F1 Score, 
manual verification, precision, and false positive rate as terms 
of importance each in the balance of capturing problems and 
warnings. The specific metrics, such as recall, match rate, and 
true positive rate provide deeper insight into how well these 
models perform in detecting important issues (Liu, Yang and 
Liao, 2024). Some metrics are domain-specific metrics, such 
as Green Code Compliance Percentage, Rule Satisfaction 
Rates, and Security Correctness that focus on sustainability 
and security. Syntax error counts, repair success rates, and 
functional correctness measures highlight the significance of 
evaluating code quality and the effectiveness of automatic 
code repair. The complexity metrics, such as Cyclomatic 
Complexity, Cognitive Complexity, and Weighted Methods 
per Class assess the structural and maintainability aspect 
of the code. Novel approaches to code comparison and 
evaluation are captured by distinctive measures, such as the 
DiffBLEU score, Levenshtein Distance, and Jaccard Index. 
As for the measurement, the most frequent usage is for the F1 
score and accuracy, which can provide a relatively objective 
and comprehensive evaluation. Accuracy is defined as the 
number of correctly identified issues (including both true 
positives and true negatives) divided by all predictions made, 
thus offering a complete picture of a tool’s effectiveness.

The datasets used in static code analysis often show an 
uneven distribution between genuine issues and non-problems 
because they contain many more instances of the latter 
(negatives). This disparity renders accuracy inadequate since 
a tool could achieve elevated accuracy by only predicting the 
majority class (non-issues) and fail to detect actual problems 
(Ignatyev, et al., 2024). The F1 score addresses this challenge 
because it merges both accuracy and recall into one single 

value (Yin, Ni and Wang, 2024). The precision metric defines 
the ratio of actual problem instances correctly identified 
from total expected problem instances to address false 
positives; recall defines the ratio of correctly detected real 
issues to prevent false negatives. The F1 score serves as the 
harmonic mean of precision and recall and provides a good 
balance between them, which makes it particularly valuable 
for evaluating static code analysis tools since both types 
of errors (false positives and negatives) can produce major 
consequences. The integrated use of accuracy and the F1 
score together can be used to assess both the reliability and 
effectiveness of static code analysis. The range of metrics 
applied shows both the extensive research in static code 
analysis and its broad application to every field of software 
engineering.

Fig. 4 highlights how academic papers are distributed 
across research categories, with performance-related studies 
leading the way due to 51 papers focusing on tool and model 
efficiency assessment. Code quality ranks as the second most 
investigated domain, with 18 papers, indicating a significant 
focus on maintainability and adherence to best practices. 
Categories, such as code analysis, code complexity, and code 
structure, each represented by 5–7 papers, highlight targeted 
efforts to understand software behavior and architecture. Less 
commonly addressed topics, including similarity, security, 
code size, process success, bug analysis, and test coverage, 
each account for fewer than five papers, indicating niche but 
essential areas of study. This distribution underscores the 
diverse priorities within the field of static code analysis and 
software engineering research.

F. Common Prompting Strategies (RQ6)
Table VII categorizes various prompting strategies for 

LLMs across the collected papers. Among the prompting 
techniques, Structured Prompting is the most widely used, 
appearing in 8 papers. This technique likely involves 
designing prompts with a defined structure to enhance a 
model’s performance. Standardized or Basic Prompting 
follows closely, with 7 associated papers, highlighting its 
role as a fundamental approach in prompt design. Few-shot 

Fig. 4. Number of papers categorized by type of evaluation metrics.
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TABLE VI
Commonly used evaluation metrics

S. No. Metric Corresponding papers Total papers
1. Accuracy (Amburle, et al., 2024), (Gupta, et al., 2023), (Hajipour, et al., 2024), (Wadhwa, et al., 2024), (Haindl and 

Weinberger, 2024), (Guo, et al., 2023a), (Villmow, et al., 2023), (Yin, Ni and Wang, 2024), (Gonzalez-
Barahona, 2024), (Akuthota, et al., 2023), (Moratis, et al., 2024)

11

2. F1 score (Amburle, et al., 2024), (Hajipour, et al., 2024), (Guo, et al., 2023a), (Bajpai, et al., 2024), (Yin, Ni and Wang, 
2024), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

8

3. Manual verification (Li, et al., 2023), (Gupta, et al., 2023), (Sikand, et al., 2024), (Pearce, et al., 2023), (Mathews, et al., 2024), 
(Ságodi, Siket and Ferenc, 2024), (Mohajer, et al., 2023)

7

4. Precision (Guo, et al., 2023a), (Bajpai, et al., 2024), (Hossain, et al., 2024), (Yin, Ni and Wang, 2024), (Gonzalez-
Barahona, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

7

5. False positive (Haindl and Weinberger, 2024), (Li and Shan, 2023), (Guo, et al., 2023b), (Yin, Ni and Wang, 2024), 
(Mohajer, et al., 2023), (Venkatesh, et al., 2024)

6

6. Recall (Guo, et al., 2023a), (Yin, Ni and Wang, 2024), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024), 
(Akuthota, et al., 2023)

5

7. Match rate (Mahyari, 2024), (Fang, et al., 2023), (Ignatyev, et al., 2024), (Bajpai, et al., 2024), (Omar and Shiaeles, 2023) 5
8. Number of rule 

violations
(Souma, et al., 2023), (Yuan, et al., 2024), (Mohajer, et al., 2023) 3

9. Time to fix issues (Sikand, et al., 2024), (Mathews, et al., 2024), (Li and Shan, 2023) 3
10. True positive (Li and Shan, 2023), (Guo, et al., 2023b), (Venkatesh, et al., 2024) 3
11. Syntax error counts (Di, et al., 2023), (Gonzalez-Barahona, 2024) 2
12. Success rate of LLM (Sikand, et al., 2024), (Hossain, et al., 2024) 2
13. False negative (Haindl and Weinberger, 2024), (Venkatesh, et al., 2024) 2
14. Security correctness (Liu, Yang and Liao, 2024), (Li and Shan, 2023) 2
15. Soundness (Omar and Shiaeles, 2023) 1
16. Completeness (Omar and Shiaeles, 2023) 1
17. Jaccard index (Amburle, et al., 2024) 1
18. Number of prompts (Souma, et al., 2023) 1
19. Green code 

compliance 
percentage

(Rahmaniar, 2024) 1

20. Rule satisfaction rates (Di, et al., 2023) 1
21. Plagiarism detection (Di, et al., 2023) 1
22. Pass@k (Hajipour, et al., 2024) 1
23. Number of discovered 

vulnerabilities
(AlOmar and Mkaouer, 2024) 1

24. Top-k accuracy (Yin, Ni and Wang, 2024) 1
25. Cyclomatic 

complexity
(Yuan, et al., 2024) 1

26. Cognitive complexity (Yuan, et al., 2024) 1
27. Correctness metrics (Pearce, et al., 2023) 1
28. Coverage metrics (Pearce, et al., 2023) 1
29. Functional 

correctness
(Liu, Yang and Liao, 2024) 1

30. Repair success rate (Liu, Yang and Liao, 2024) 1
31. BLEU (Mahyari, 2024) 1
32. Mean (Jesse, et al., 2023) 1
33. Bug/patch ratio (Ignatyev, et al., 2024) 1
34. Logical lines of code (Ságodi, Siket and Ferenc, 2024) 1
35. Number of statements (Ságodi, Siket and Ferenc, 2024) 1
36. McCabe cyclomatic 

complexity
(Ságodi, Siket and Ferenc, 2024) 1

37. Nesting level (Ságodi, Siket and Ferenc, 2024) 1
38. Coding smells (Ságodi, Siket and Ferenc, 2024) 1
39. ABC metric (Ardito, Ballario and Valsesia, 2023) 1
40. Weighted methods 

per class
(Ardito, Ballario and Valsesia, 2023) 1

41. Number of public 
methods

(Ardito, Ballario and Valsesia, 2023) 1

42. Number of public 
attributes

(Ardito, Ballario and Valsesia, 2023) 1

43. Class operation 
accessibility

(Ardito, Ballario and Valsesia, 2023) 1

44. Class data 
accessibility

(Ardito, Ballario and Valsesia, 2023) 1

45. Area under the curve (Akuthota, et al., 2023) 1
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TABLE VII
Distribution prompting strategies

S. No. Prompt type Corresponding papers Total papers
1. Structured prompting (Souma, et al., 2023), (Liu, Yang and Liao, 2024), (Fang, et al., 2023), (Ignatyev, et al., 2024), 

(Mathews, et al., 2024), (Mohajer, et al., 2023), (Venkatesh, et al., 2024), (Moratis, et al., 2024)
8

2. Standardized/basic prompting (Hajipour, et al., 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Fang, et al., 2023), (Bajpai, et al., 
2024), (Li and Shan, 2023), (Ságodi, Siket and Ferenc, 2024)

7

3. Few-shot prompting (Amburle, et al., 2024), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Sikand, et al., 2024), 
(Li and Shan, 2023), (Gonzalez-Barahona, 2024)

6

4. Zero-shot prompting (Amburle, et al., 2024), (Wadhwa, et al., 2024), (Sikand, et al., 2024), (Gonzalez-Barahona, 2024) 4
5. Iterative prompting (Souma, et al., 2023), (Pearce, et al., 2023), (Purba, et al., 2023), (Omar and Shiaeles, 2023) 4
6. One-shot prompting (Sikand, et al., 2024), (Gonzalez-Barahona, 2024), (Omar and Shiaeles, 2023) 3
7. Task-specific prompting (Rahmaniar, 2024), (Yin, Ni and Wang, 2024) 2
8. CoT prompting (Hajipour, et al., 2024), (Guo, et al., 2023a) 2
9. Natural language descriptions (Pearce, et al., 2023), (Ignatyev, et al., 2024) 2
10. High-level query language (Di, et al., 2023), (Bajpai, et al., 2024) 2
11. Temporal and spatial context (Bajpai, et al., 2024) 1
12. Retrieval-augmented generation (Li and Shan, 2023) 1
13. Scenario-based prompting (Mahyari, 2024) 1
14. Correction prompt (Hajipour, et al., 2024) 1

Prompting, where the model is given limited examples, is 
addressed in 6 papers, while Zero-shot Prompting, where the 
model is given no examples, is used in 4 papers. Iterative 
Prompting, which involves multi-step refinement, appears 
in 4 papers. One-Shot Prompting has 3 associated papers, 
indicating a growing interest in specific task-tailored or 
stepwise reasoning approaches. Less frequently studied 
techniques include Task-Specific Prompting, Chain-of-
Thought (CoT, henceforth) Prompting, Natural Language 
Descriptions, and High-Level Query Language, each 
appeared in 2 papers. Niche methods, such as Temporal and 
Spatial Context, Retrieval-Augmented Generation, Scenario-
Based Prompting, and Correction Prompts are mentioned 
in 1 paper each, reflecting emerging or specialized areas of 
research in LLM prompting strategies in the case of static 
code analysis.

Structured Prompting, Standardized/Basic Prompting, and 
Few-shot Prompting are the most widely used prompting 
strategies due to their effectiveness, simplicity, and 
adaptability to the static code analysis unique challenges. 
Structured Prompting is advantageous as it offers a 
coherent, systematic framework for directing models in code 
analysis, which corresponds effectively with the ordered 
characteristics of programming languages. This approach 
enables the breakdown of complex code analysis tasks into 
smaller components, which improve the model’s ability to 
detect issues, such as syntax errors, code smells, or security 
vulnerabilities (Jesse, et al., 2023). Standardized/Basic 
Prompting is chosen because it is straightforward and can be 
duplicated because it involves specific directions that apply 
from one codebase to another and from one analytical task 
to another (Mathews, et al., 2024). This sets up a trustworthy 
standard for evaluating static code analysis techniques. The 
method is exceptionally effective for static code analysis 
because it allows models to learn from limited examples, 
which makes it very useful when datasets are small or when 
shifting between coding languages or styles. These strategies 
together meet the needs for static code analysis precision, 

scalability, and adaptability, which make them the most 
common approaches in research. This distribution shows the 
scope and distinctiveness of prompt engineering strategies 
that are being studied in the related works.

G. Common Limitations and Challenges (RQ7)
In this survey, the following challenges and constraints on 

the use of LLMs in static code analysis are identified:
1. High false positive rates: In the static code analysis, 

LLMs tend to produce many false positives that require a 
thorough human verification process to detect actual issues. 
Some of the related challenges include; how to detect Null 
Dereferences and Resource Leaks among others (AlOmar 
and Mkaouer, 2024), (Guo, et al., 2023b), (Mohajer, et al., 
2023), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024).

2. Token and context limitations: LLMs have limitations on the 
input size which makes them not very effective in handling 
large codebases or complex dependencies at a time. For 
example, dealing with imported module code or checking 
through large files is challenging (Amburle, et al., 2024), 
(Wadhwa, et al., 2024), (Sikand, et al., 2024), (Yuan, et al., 
2024), (Liu, Yang and Liao, 2024), (Jesse, et al., 2023), 
(Fang, et al., 2023), (Mathews, et al., 2024), (Li and Shan, 
2023), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024).

3. Data limitations: It is a common issue to find that the quality 
and diversity of training data sets directly impact the model’s 
generality and accuracy. The reliance on databases, such as 
CVE, which are prone to errors, decreases the accuracy of 
vulnerability detection (Amburle, et al., 2024), (Rahmaniar, 
2024), (Hajipour, et al., 2024), (Haindl and Weinberger, 
2024), (Guo, et al., 2023a).

4. Non-deterministic outputs: Uncertainty about how many 
times LLMs will produce different outcomes from multiple 
executions for the same input creates problems when 
integrating them into static code analysis frameworks. 
For instance, making coding integration and development 
workflows deterministic is difficult due to the variability 
result (Rahmaniar, 2024), (Bajpai, et al., 2024).
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5. Computational costs: The high resource requirements 
pose a significant problem for implementing large-scale 
code analysis with LLMs and the need for fine-tuning 
that complicates this issue further. Flow-sensitive pointer 
information and extensive call graphs demand substantial 
processing resources to address them (Bajpai, et al., 2024), 
(Venkatesh, et al., 2024), (Omar and Shiaeles, 2023).

6. Model hallucinations and assumptions: Sometimes LLMs 
produce wrong or overconfident outcomes because of built-
in biases and limited understanding of context. For instance, 
when doing bug detection tasks, they frequently hallucinate 
or miss dependencies (Amburle, et al., 2024), (Li and Shan, 
2023), (Gonzalez-Barahona, 2024).

7. Scalability and adaptability issues: LLMs struggle to 
generalize across different languages, ecosystems, or 
complex design patterns. For instance, they have a limited 
capacity to preserve language-specific semantics while doing 
cross-language analysis (Gupta, et al., 2023), (Villmow, 
et al., 2023).

V. Future Directions of Research
Examining the collected papers reveals that there are many 

research gaps to be addressed in using LLMs for static code 
analysis, which can be summarized as follows:
1. Improving prompt engineering

•	 Researchers can develop automated prompt 
generating strategies to tailor prompts for certain 
activities (such as vulnerability detection and bug 
fixing) (Li, et al., 2023).

•	 To increase accuracy and reasoning in challenging tasks, 
researchers can investigate iterative prompting and CoT 
prompting (Li, et al., 2023).

•	 Researchers can examine task-specific prompt templates 
for various analytical tasks and programming languages 
(Liu, Yang and Liao, 2024).

2. Fine-tuning LLMs for specific tasks
•	 To enhance the performance, researchers can fine-tune 

LLMs using domain-specific datasets (such as code 
vulnerabilities and static analysis warnings) (Hossain, 
et al., 2024).

•	 To improve accuracy and efficiency, researchers 
can develop hybrid models that incorporate LLMs 
in traditional static analysis techniques (Omar and 
Shiaeles, 2023).

•	 To allow LLMs to manage several static code analysis 
tasks at once, researchers can investigate multi-task 
learning (Yin, Ni and Wang, 2024).

3. Handling complex and obfuscated code
•	 Researchers can develop techniques to de-obfuscate 

code before analysis using LLMs (Fang, et al., 2023).
•	 Researchers can integrate graph-based representations 

(e.g., control flow graphs and data flow graphs) to 
help LLMs understand complex code structures 
(Hossain, et al., 2024).

•	 Researchers can explore multi-agent systems where 
LLMs collaborate with other tools to analyze 
interconnected code components (Bajpai, et al., 2024).

4. Reducing false positives and improving precision
•	 Researchers can combine LLMs with rule-based systems 

or ML classifiers to filter out false positives (Guo, et al., 
2023b).

•	 Researchers can use ranking mechanisms to prioritize 
the most likely true positives for developer review 
(Mohajer, et al., 2023).

•	 Researchers can develop explainable AI techniques to 
help developers understand why a particular issue was 
flagged (Wadhwa, et al., 2024).

5. Expanding language and framework support
•	 Researchers can extend LLM-based static analysis 

to less common programming languages (e.g., Rust, 
Kotlin, Swift, Arduino, etc.) (Guo, et al., 2023a).

•	 Researchers can develop cross-language LLMs-based 
analysis tools that can handle multi-language projects 
(Guo, et al., 2023a).

•	 Researchers can explore support for domain-specific 
languages (e.g., solidity for smart contracts) (Ardito, 
Ballario and Valsesia, 2023).

6. Integration with development workflows
•	 Researchers can develop IDE plugins that leverage 

LLMs for real-time code analysis and feedback (Bajpai, 
et al., 2024).

•	 Researchers can create automated tools for continuous 
monitoring of code quality and vulnerabilities using 
LLMs (Akuthota, et al., 2023).

•	 Researchers can explore collaborative workflows where 
LLMs assist developers in debugging, refactoring, and 
code review (Bajpai, et al., 2024).

7. Addressing ethical and security concerns
•	 Researchers can develop secure coding guidelines for 

LLM-generated code to prevent vulnerabilities (Purba, 
et al., 2023).

•	 Researchers can investigate adversarial training to make 
LLMs more robust against malicious inputs (Li and 
Shan, 2023).

•	 Researchers can ensure data privacy by avoiding the 
use of proprietary or sensitive code in LLM training 
datasets (Akuthota, et al., 2023).

8. Scaling to large codebases
•	 Researchers can develop chunking strategies to break 

down large codebases into manageable segments for 
analysis (Bairi, et al., 2024).

•	 Researchers can use hierarchical models that analyze 
code at multiple levels of granularity (e.g., file-level, 
function-level, etc.) (Ignatyev, et al., 2024).

•	 Researchers can explore distributed computing 
techniques to scale LLM-based analysis to enterprise-
level projects (Venkatesh, et al., 2024).

9. Benchmarking and standardization
•	 Researchers can produce uniform datasets and metrics 

that enable effective assessment of LLM performance 
in static code analysis tasks (Yin, Ni and Wang, 2024).

•	 Researchers can establish assessment tools that report on 
both primary product behavior and secondary qualities 
including code readability and maintainability (Ságodi, 
Siket and Ferenc, 2024).
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•	 Researchers can foster open-source contributions 
to aggregate research data and materials (Omar and 
Shiaeles, 2023).

10. Enhancing explainability and developer trust
•	 Researchers can design tools that give thorough 

explanations for the LLM-produced analysis findings 
(Wadhwa, et al., 2024).

•	 Researchers can use interactive interfaces where 
developers can request further context or clarification 
from LLMs (Bajpai, et al., 2024).

•	 Researchers can study how human-loop systems 
function to cooperate between developers and 
LLMs to improve analysis product accuracy 
(Mohajer, et al., 2023).

11. Exploring hybrid approaches
•	 Researchers can improve precision by integrating LLMs 

with symbolic execution, abstract interpretation, or 
formal methods (Omar and Shiaeles, 2023).

•	 Researchers can integrate LLMs with graph-based 
models (e.g., GraphCodeBERT) for better representation 
of code dependencies (Hossain, et al., 2024).

The future of static code analysis using LLMs lies in 
improving prompt engineering, fine-tuning models for 
specific tasks, reducing false positives, and integrating 
LLMs into development workflows. By combining LLMs 
with traditional static analysis tools and exploring hybrid 
approaches, researchers can unlock the full potential of 
LLMs for different static code analysis tasks.

VI. Threat to Validity
The results of surveys may be impacted by many factors. 

Thus, to prevent validity risks, the following steps were taken 
into consideration for this paper:
•	 Finding related papers: The availability of all relevant papers 

cannot be guaranteed. To find the related papers, a search 
string containing several word synonyms was employed, and 
many well-known literature databases were employed. There 
could yet be some missing papers, though. The snowballing 
search strategy was used to mitigate this issue by lowering 
the likelihood of missing related papers.

•	 Accuracy of data extraction: When extracting data from 
the chosen papers, several errors might happen. The data 
extraction procedure was carried out by hand to address this 
threat. The spreadsheet also made advantage of Microsoft 
Excel’s automatic mining and filtering features. After that, 
the outcomes of the two approaches were contrasted to 
identify any differences and create a final Excel document 
with all the correct extracted data.

•	 Study reproducibility: A further threat is that if this study is 
carried out or replicated, other researchers could get similar 
findings. Every stage of the research approach used and 
carried out in this study was thoroughly explained to address 
this threat (see Section III).

VII. Conclusion
This survey highlights the transformative role of LLMs in 
static code analysis, offering a fresh perspective on leveraging 
LLMs to address longstanding challenges in software quality, 
security, and maintainability. By synthesizing insights from 
a diverse range of studies, we identified how LLMs excel 
in tasks, such as vulnerability detection, bug fixing, and 
code quality assurance, often complementing or surpassing 
traditional static analysis tools. Key strengths include their 
ability to understand complex code semantics and adapt to 
diverse programming languages and contexts. However, 
integrating LLMs into static code analysis workflows is 
not without challenges. High false positive rates, token 
size constraints, and computational costs remain significant 
barriers to widespread adoption. Looking ahead, future 
research should focus on refining prompt engineering, 
exploring underrepresented programming languages and 
niche tasks, and improving scalability to support large 
codebases. In addition, expanding benchmarks and real-world 
case studies will further validate the practical utility of LLMs 
in static code analysis. As the field evolves, LLMs have the 
potential to redefine software engineering practices, making 
development processes more efficient, secure, and adaptive 
to the complexities of modern codebases and software 
applications. By bridging the gap between traditional static 
code analysis methods and AI-driven solutions, this study 
aims to inspire researchers and practitioners to unlock the full 
potential of LLMs, contributing to the ongoing advancement 
of secure and high-quality software development.
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