
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 251

A Systematic Survey on Large Language Models for
Static Code Analysis

Hekar A. Mohammed Salih1† and Qusay I. Sarhan2

1Department of Computer Science, College of Science, University of Duhok,
Zakho Street 38 AJ, Duhok, Kurdistan Region - Iraq

2Department of Computer Science, College of Science, University of Duhok,
Zakho Street 38 AJ, Duhok, Kurdistan Region - Iraq

Abstract—Static code analysis plays a pivotal role in improving
software quality, security, and maintainability by detecting
vulnerabilities, errors, and programming issues in source code
without executing it. Recent advancements in artificial intelligence,
especially the development of large language models (LLMs),
such as ChatGPT, have enabled transformational opportunities
in this domain. Thus, it is essential to explore this emerging field
of research from many perspectives. This systematic survey
focuses on the use of LLMs for static code analysis, detailing their
applications, advantages, contexts, limitations, etc. The study
examines research papers published on the topic from reputable
literature databases to answer several research questions
regarding the state-of-the-art use of LLMs in static code analysis.
In addition, different research gaps and challenges were identified
and discussed alongside many directions. The results of this study
demonstrate how LLMs can enhance static code analysis and
address existing limitations, paving the way for developers and
researchers to employ LLMs for a more affordable and effective
software development process.

Index Terms—Large language models, Software metrics,
Software quality, Static code analysis.

I. Introduction
Static code analysis is a crucial activity in software
development, which is aimed at detecting possible
vulnerabilities, defects, or other issues related to code quality
without executing the program (Louridas, 2006). Traditional
static analysis techniques are based on rules and heuristics
defined to analyze the source code; however, they often face
challenges with modern complex systems and new coding
styles. Static code analysis is essential in several domains
including software engineering, cybersecurity, and the
Internet of Things (IoT, henceforth). For example, in software

engineering, static code analysis is critical for the prompt
resolution of potential code threats, which in turn makes it
easy to develop software programs that are competent, high-
quality, reliable, and error-free (Ramamoorthy, et al., 2024).
In the area of cybersecurity, it helps locate and understand
vulnerabilities in sensitive information systems, such
as banking and healthcare systems (Hassan, Sarhan and
Beszédes, 2024). In the field of IoT, where interconnected
devices are used extensively in critical areas, such as
healthcare, smart cities, and automated industry, the risk is
higher than ever. With the diverse resource and connection
constraints, static code analysis ensures that IoT applications
meet high performance and security needs. Static code
analysis helps to a system’s robustness and effectiveness,
thereby enhancing the overall safety and efficiency of
contemporary digital ecosystems (Kotenko, Izrailov and
Buinevich, 2022).

Large language models (LLMs, henceforth), such as
ChatGPT and many others have triggered a new interest in
their application for improving static code analysis. LLMs
have a unique feature that allows them to understand source
code because they are trained on extensive code and natural
language datasets. In addition to that, LLMs can recognize
many different types of code issues, especially those that
require an in-depth comprehension of context or intricate
reasoning. Furthermore, by synthesizing information from
multiple code snippets, LLMs may be able to recognize
several issues that offer a great deal of information on the
code’s readability, maintainability, and compliance with
software design paradigms. On the other hand, traditional
methods, such as abstract syntax tree (AST, henceforth)
analysis, data flow analysis, and static symbolic execution
may not be able to identify certain types of faults compared
to LLMs.

By incorporating more advanced artificial intelligence
(AI) models, especially LLMs, there is a remarkable
transformation in the methods of software development in
the fast-evolving field of software engineering. Generative
AI technologies are widely adopted because they have
clear advantages, such as high productivity, high accuracy,
and rapid development cycles. Industry research suggests
that by 2027, around 70% of professional software

ARO-The Scientific Journal of Koya University
Vol. XIII, No. 1 (2025), Article ID: ARO.12082. 15 pages
DOI: 10.14500/aro.12082
Received: 03 March 2025; Accepted: 27 May 2025
Regular review paper; Published: 22 June 2025
†Corresponding author’s e-mail hekar.mohammedsalih@uod.ac
Copyright © 2025 Hekar A. Mohammed Salih and Qusay I.
Sarhan. This is an open-access article distributed under the Creative
Commons Attribution License (CC BY-NC-SA 4.0).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

252 http://dx.doi.org/10.14500/aro.12082

developers will use AI-assisted coding tools for standard
programming activities, such as code creation, debugging,
and optimization (Sikand, et al., 2024). The use of LLMs
for static code analysis, or in combination with traditional
methods, holds great potential for developing new tools
in the software industry. Given their knowledge of
natural and programming languages, LLMs can find bugs,
provide specific suggestions in code, and even improve a
developer’s productivity.

This systematic survey represents the first comprehensive
review focused exclusively on LLM-based static code analysis.
Through rigorous examination of many related studies, the
survey provides insights and establishes a novel taxonomy for
this rapidly evolving field, while identifying critical limitations
and proposing actionable research directions.

Summing up, the key contributions of this survey are
listed below:
•	 First dedicated survey: This survey provides the first

dedicated, systematic examination of LLMs for static code
analysis, establishing a comprehensive foundation for
understanding their applications, capabilities, and limitations
in this specific domain. Unlike broader surveys of LLMs in
software engineering, our work focuses exclusively on static
code analysis tasks.

•	 Systematic methodology: This survey concentrates on the
research that were recently published on the topic by using
systematic techniques for inclusion and exclusion of the
criteria set by the clearly articulated questions.

•	 Identification of critical challenges: This survey highlights
the limitations of LLMs in static analysis, such as (high
false positive rates, context window constraints, and
computational costs as key adoption barriers).

•	 Statistical synthesis of LLMs applications in static code
analysis: The survey provides a comprehensive statistical
synthesis of prior research, including the prevalence of
LLMs, such as ChatGPT-4 and its alternatives, as well as
traditional static code analysis tools that have been widely
used. It also covers programming language distribution,
software engineering tasks coverage, evaluation metrics,
and prompting strategies in significant detail.

•	 Future research directions: This survey identifies many
possible research directions that need to be studied and
addressed by researchers. Thus, this work serves as a quality
reference for researchers and developers, bridging the gap
between LLMs and static code analysis while setting a
foundation for future advancements.

This systematic survey was prompted by the reasons listed
below:
•	 Traditional static code analysis constraints: Traditional

approaches, such as AST analysis, data flow analysis, and
symbolic execution often fail to detect coding errors and
coding quality issues as they are not designed to understand
codes. Such techniques may be enhanced by LLMs which
offer improved comprehension and reasoning capabilities
over the code.

•	 LLMs for static code analysis: The use of LLMs in coding
activities is rapidly increasing, making it necessary to
evaluate their effectiveness in performing static code
analysis in terms of functional correctness, security, and
maintainability. A survey would facilitate the evaluation
of their strengths, limitations, and potential areas for
development in this area.

•	 Gaps in existing research: A significant deficiency exists in
survey research that particularly examines the application
of LLMs in static code analysis. A systematic survey would
address this gap by aggregating insights on how LLMs might
improve static code analysis and pinpointing areas for further
advancement.

The remainder of this survey paper is structured as follows:
Section II presents the related works for this survey. Section
III describes the details of the research methodology that
has been used to conduct this survey systematically. Section
IV presents the results and outcomes of this survey. Section
V presents the future directions of research in the selected
topic. Section VI outlines threats to validity and the measures
taken to address them. Finally, the conclusions of the survey
are provided in Section VII.

II. Related Works
The use of LLMs in software engineering has transformed

several research areas, including static code analysis, code
creation, optimization, testing, maintenance, and security.
This section summarizes the progress and related works
that have been performed in the literature divided in several
categories, as follows:

A. Code Generation and Optimization
The application of LLMs to the generation and completion

of code has gained significant attention in recent years.
The authors (Zheng, et al., 2023a) offer a comprehensive
review of the development of LLMs for code generation
and their astounding success in this task. In addition, they
discussed the impact of model size and the quality of data
on code generation, and called for more comprehensive
ways to enhance these models. In (Zheng, et al., 2023b),
the incorporation of LLMs into software engineering and
their efficiency in code summarization or repair tasks were
discussed significantly. The study highlights the innovative
changing possibilities of LLMs in boosting developer
efficiency and automating mundane coding tasks, while
calling for further research to solve issues, such as model
explainability and optimization for specific tasks. LLMs have
proven to be useful in the area of code optimization as well
as by increasing the overall efficiency of the code, such as in
the cases of execution duration and memory use. The authors
(Gong, et al., 2025), provide a systematic literature review
pinpointing different trends and obstacles in LLMs-based
code optimization. The paper emphasizes the superiority
of general-purpose LLMs, such as GPT-4 for general

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 253

optimization tasks, although other models excel in specific
optimization tasks. The primary issues include reconciling
model complexity with practical applicability and attaining
cross-linguistic generalizability. The authors suggest further
research avenues, including model reduction and multilingual
optimization, to improve the efficiency and resilience of
LLM-based code optimization methods for more dependable
and scalable solutions.

B. Software Testing and Debugging
The application of LLMs in automating software testing

activities, including test case development, program repair,
and bug detection, has been thoroughly investigated in
many studies. The authors (Wang, et al., 2024), conducted
a comprehensive review on the applications of LLMs in
activities, such as unit test case development and test oracle
creation. While noting the effective capabilities of LLMs for
the generation of diverse test inputs and their use in testing,
they identified the obstacles that hinder achieving appropriate
coverage and the test oracle challenge. They also discussed
automating and optimizing software testing and debugging
processes with the novel capabilities of LLMs while noting
the imperfection of existing studies, such as the lack of
integration into actual developer’s work and lack of tools for
deeper evaluation.

C. Software Maintenance and Management
LLMs have been put to use for the automation of several

tasks within software maintenance and management,
including rewriting code, creating documentation, and
managing the software’s lifecycle. The authors (Zhang,
et al., 2023a), discussed the impact of LLMs on coding
tasks, such as code creation, summarization, and program
repair. The author vividly describes the increasing LLM-
based software engineering research, driven by deep learning
and the availability of open-source code on repositories. The
authors (Hou, et al., 2023), conducted a systematic review
and identified 85 distinct software engineering jobs in which
LLMs have demonstrated efficacy, notably in software
development and maintenance. These studies provide
evidence that different tasks can be automated using LLMs,
which drives software quality improvement, but at the same
time creates new challenges, such as data dependence, model
size, and generalization. The authors suggest the focus should
move toward developing domain-oriented LLMs, along with
more detailed evaluation processes.

D. Security and Vulnerability Detection
The utilization of LLMs for detecting and addressing

security issues in software systems is a rapidly growing
area of study. The authors (Chen, et al., 2024) provided a
systematic analysis that classifies the types of attacks and
how LLMs can be used to detect them. Furthermore, they
provided several defense strategies that can be used to prevent
such attacks. The authors (Zhou, et al., 2024) conducted a
literature review on the employment of LLMs for discovering

and fixing software vulnerabilities. This study shows that
encoder-only models, such as CodeBERT, performed best for
detection tasks, while decoder-only models, such as GPT-4
excelled at repair tasks. These papers jointly highlight the
ability of LLMs for enhancing software security.

E. Natural Language Processing in Software Engineering
Like many domains, the intersection of natural language

processing (NLP, henceforth) and software engineering has
been very promising with respect to research for different
activities, such as code summarization, code translation,
and even code repair. The authors in (Zhang, et al.,
2023b), provided a detailed understanding of processes
related to coding by reviewing work on language model-
based processing of code, including modern changes that
improve performance, such as moving from statistical
models to pre-trained transformers and LLMs. The
research focuses on the efficiency of LLMs, such as Codex
and GitHub Copilot, within the scope of code generation
and comprehension. Moreover, it tackles issues, such as
the need for thorough evaluation strategies, benchmarks,
and the need for better practical features for codes. The
authors in (Salem, et al., 2024), investigated the role of
language models in the intersection of spoken languages
and computer languages, particularly in automated
processes that include writing of code, code refactoring,
and debugging. Such studies together demonstrate the
promise the application of LLMs has for changing
the workflow of software engineering to foster higher
productivity of software developers and enable the
automation of complex processes.

F. Sustainability and Reusability in Software Engineering
The environmental impact and the sustainability of using

LLMs in software engineering have also been addressed
in many studies. The authors (Hort, Grishina and Moonen,
2023), examined the diffusion of software source codes and
other studies artifacts and found out that only 27% of relevant
studies provide sufficient artifacts for reuse. The paper
highlights the significant energy consumption associated with
training such large models and argues for more transparency
regarding hardware specifications and training durations. The
authors advocate for the dissemination of pre-trained models
to mitigate unnecessary training and foster sustainable
methods in software engineering. This research highlights the
necessity of mitigating the environmental effect of LLMs and
enhancing model reusability to promote sustainability in the
domain.

In recent years, the incorporation of LLMs into software
engineering has attracted considerable research interest,
with various surveys investigating their applications in
tasks, such as code generation, optimization, and testing.
However, this systematic survey differentiates itself by
providing a concentrated, thorough, and rigorous analysis of
LLMs specifically for static code analysis, highlighting their
applications, challenges, and other aspects often overlooked

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

254 http://dx.doi.org/10.14500/aro.12082

in general surveys. Thus, this survey represents a significant
contribution to the field of software engineering, particularly
in the niche area of static code analysis. To achieve this, the
survey follows a systematic approach making the analysis of
the related works to be relevant and accurate, which in return
increases the trustworthiness of the obtained results. Thus,
this study can be considered as the most comprehensive and
up-to-date study on the use of LLMs in static code analysis,
which is beneficial for developers and researchers alike.

III. Research Methodology
This survey follows established guidelines for conducting

systematic literature surveys which were presented in
(Petersen, Vakkalanka and Kuzniarz, 2015). Fig. 1 illustrates
the five steps in the study’s process. The first step defines
the purpose and scope of the study and defines its objectives
along with the research questions (RQs) to be answered.
The second step termed the search strategy, focuses on
devising a method for searching relevant articles related to
the topic under investigation. In the third step, the identified
papers are screened and filtered. The fourth step involves
data extraction, whereby the selected papers are reviewed
and relevant data that meets the objectives of the research
is collected. The results are documented during the fifth step
of the process. Subsequently, the following sections explain
these steps in detail.

A. Identification of Research Objectives and Questions
1. Research objectives: This systematic survey seeks

to examine the published works on involving static
code analysis with LLMs by searching, assessing, and

categorizing state-of-the-art contributions. This is done so
that developers and researchers can understand the answers
to particular questions and subsequently enhance their efforts
in development and research.

2. RQs: Several primary RQs have been defined and answered
in this survey. Each RQ deals with a different dimension of
the topic of the study, as follows:
•	 RQ1: What are the most frequently used LLMs for static

code analysis tasks?
•	 RQ2: What are the traditional static code analysis tools

that are used to assess the quality of LLMs for static
code analysis?

•	 RQ3: What are the major programming languages used
in research for specific static code analysis tasks that
involve the use of LLMs?

•	 RQ4: What is the range of software engineering
activities that have been targeted by static code analysis
with LLMs?

•	 RQ5: Which evaluation metrics are most used in
quantifying the accuracy and utility of LLMs in static
code analysis?

•	 RQ6: What prompt design strategies are most effective
for optimizing LLMs performance in static code
analysis?

•	 RQ7: What are the common challenges and limitations
in leveraging LLMs for static code analysis?

B. Search Strategy
1. Literature sources: Well-known standard online databases,

such as IEEE Xplore, Elsevier Science Direct, and ACM
Digital Library. that index most of the papers relevant to
the scope of this survey were selected as literature sources.

Fig. 1. The employed survey process.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 255

2. Search string: Using the database literature sources, the
following search string was used to locate the papers relevant
to this survey:

 “(Generative AI OR LLM OR Large Language Model)
AND (static code analysis)”

All terms of the search string were linked with each other
using Boolean operators (Brereton, et al., 2007). The Boolean
“OR” was employed to link synonyms or related terms that
refer precisely or broadly to different aspects of the study topic
and the Boolean “AND” was used to link the major terms.

C. Paper Selection
1. Paper inclusion/exclusion criteria: A set of inclusion and

exclusion criteria were established and employed to decide
whether a paper is relevant to this study or not. These criteria,
which are listed below, have been applied based on the titles,
abstracts, and full-text reading of the collected papers.
a. Inclusion criteria:
•	 Papers related directly to static code analysis using

LLMs.
•	 Papers published over the past 2 years (2023–2024).

According to our search and exploration of the literature,
papers on static code analysis using LLM started in
2023.

b. Exclusion criteria:
•	 Papers not published in English
•	 Papers not peer reviewed (e.g., grey literature)
•	 Papers not published electronically
•	 Papers that are duplicates of other papers
•	 Papers without clear results and evidence.

2. Snowballing: To reduce the risk of missing some relevant
papers, the snowballing search technique (Wohlin, 2014)
was applied to the remaining papers. In snowballing, the
reference list of each paper is checked with the inclusion/
exclusion criteria. Then, the paper selection process is
applied recursively to the papers that have been found. Fig. 2
shows the number of included and excluded papers at each
stage of the paper selection process.

All the papers used in this study are listed below: (Sikand,
et al., 2024), (Amburle, et al., 2024), (Li, et al., 2023),
(Rahmaniar, 2024), (Hajipour, et al., 2024), (Wadhwa,
et al., 2024), (AlOmar and Mkaouer, 2024), (Yuan, et al.,
2024), (Mahyari, 2024), (Fang, et al., 2023), (Mathews,
et al., 2024), (Li and Shan, 2023), (Hossain, et al., 2024),
(Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar
and Shiaeles, 2023), (Guo, et al., 2023a), (Ságodi, Siket and
Ferenc, 2024), (Venkatesh, et al., 2024), (Moratis, et al.,
2024), (Souma, et al., 2023), (Pearce, et al., 2023), (Bajpai,
et al., 2024), (Yin, Ni and Wang, 2024), (Bairi, et al., 2024),
(Akuthota, et al., 2023), (Ignatyev, et al., 2024), (Gupta,
et al., 2023), (Liu, Yang and Liao, 2024), (Villmow, et al.,
2023), (Jesse, et al., 2023), (Guo, et al., 2023b), (Di, et al.,
2023), (Haindl and Weinberger, 2024), (Ardito, Ballario and
Valsesia, 2023), (Purba, et al., 2023).

Fig. 2. Results of the paper selection process.

D. Data Extraction and Analysis
To address the RQs, data were taken from the chosen

papers and thoroughly examined. An Excel document with
several fields was made, especially for this study to include
the extracted data. As presented in Table I, each field contains
a data item and a value. It is worth mentioning that the Excel
document can be accessed by clicking on the link given here:
Extraction form (Google Drive).

IV. Results
All of the papers selected were thoroughly examined to

address the RQs that were identified for this survey. Based
on the results, each RQ is represented by a brief title and is
covered in the next subsections.

A. Popular LLMs for Static Code Analysis (RQ1)
Table II presents the most used LLMs in research. It

is clear that OpenAI’s models, such as ChatGPT-4 and
ChatGPT-3.5-turbo, lead the academic landscape, with
ChatGPT-4 being referenced in 16 studies, underscoring
its versatility and widespread adoption. ChatGPT models,
particularly ChatGPT-4 and ChatGPT-3.5-turbo, are popular
LLMs because they are the best performers at tasks, are easy
to reach through OpenAI APIs, and have better contextual
understanding and reasoning. With researchers, working on
AI-powered static analysis and software engineering, they
remain a top choice especially when economical options,
such as ChatGPT-3.5-turbo are available (Gupta, et al.,
2023; Acl, 2024). This is because the researchers can find
fairly priced options for a variety of tasks including bug
detection, code generation, and even vulnerability scans.
LLMs are known to have a wide range of applications in
static code analysis. They aid in enhancing error detection,
warning verification, as well as static analysis test
translations across programming languages. LLMs are also

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

256 http://dx.doi.org/10.14500/aro.12082

TABLE I
Data Extraction Form

Data item Value RQs
Paper number Paper ID. None
Paper title Title of the study. None
Used LLMs LLMs used in the studies. RQ1
Static code
analysis tools

Static code analysis tools used in the studies with
LLMs for code evaluation.

RQ2

Programming
languages

Programming languages involved in the studies
utilizing LLMs for static code analysis.

RQ3

Type of tasks Tasks of static code analysis performed in the
studies using LLMs.

RQ4

Evaluation
metrics

Metrics used to assess the effectiveness of LLMs
for static code analysis.

RQ5

Prompt designs Strategies of effective prompt designs for LLMs
used in static code analysis tasks.

RQ6

Limitations and
challenges

Limitations and Challenges of performing static
code analysis using LLMs.

RQ7

LLMs: Large language models, RQs: Research questions

Table II
Popular LLMs for Static Code Analysis

S. No. LLM Corresponding papers Total papers
1. ChatGPT-4 (Amburle, et al., 2024), (Li, et al., 2023), (Rahmaniar, 2024), (Hajipour, et al., 2024), (Wadhwa, et al., 2024), (AlOmar

and Mkaouer, 2024), (Sikand, et al., 2024), (Yuan, et al., 2024), (Mahyari, 2024), (Fang, et al., 2023), (Mathews,
et al., 2024), (Li and Shan, 2023), (Hossain, et al., 2024), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar
and Shiaeles, 2023)

16

2. ChatGPT-3.5-turbo (Guo, et al., 2023a), (Mahyari, 2024), (Fang, et al., 2023), (Ságodi, Siket and Ferenc, 2024), (Mohajer, et al., 2023),
(Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024), (Omar and Shiaeles, 2023), (Moratis, et al., 2024)

9

3. ChatGPT-3.5 (Amburle, et al., 2024), (Souma, et al., 2023), (Hajipour, et al., 2024), (Yuan, et al., 2024), (Pearce, et al., 2023),
(Li and Shan, 2023), (Hossain, et al., 2024)

7

4. CodeLlama (Amburle, et al., 2024), (Fang, et al., 2023), (Bajpai, et al., 2024), (Li and Shan, 2023), (Yin, Ni and Wang, 2024),
(Omar and Shiaeles, 2023)

6

5. ChatGPT-2 (Bairi, et al., 2024), (Pearce, et al., 2023), (Akuthota, et al., 2023) 3
6. GitHub Copilot (Rahmaniar, 2024), (AlOmar and Mkaouer, 2024), (Ságodi, Siket and Ferenc, 2024) 3
7. CodeGen (AlOmar and Mkaouer, 2024), (Ignatyev, et al., 2024), (Venkatesh, et al., 2024) 3
8. ChatGPT-3 (Bairi, et al., 2024), (Wadhwa, et al., 2024) 2
9. Mixtral (Li, et al., 2023), (Bajpai, et al., 2024) 2
10. Google Bard (Rahmaniar, 2024), (Gupta, et al., 2023) 2
11. Codex (Liu, Yang and Liao, 2024), (Ignatyev, et al., 2024) 2
12. Polycoder (Liu, Yang and Liao, 2024), (Ignatyev, et al., 2024) 2
13. DeepSeek-Coder (Bajpai, et al., 2024), (Yin, Ni and Wang, 2024) 2
14. WizardCoder (Yin, Ni and Wang, 2024), (Omar and Shiaeles, 2023) 2
15. Mistral (Yin, Ni and Wang, 2024), (Omar and Shiaeles, 2023) 2
16. ChatGPT-1 (Bairi, et al., 2024) 1
17. StarCoder (Amburle, et al., 2024) 1
18. CodeQL (AlOmar and Mkaouer, 2024) 1
19. CodeFuse (Pearce, et al., 2023) 1
20. AI21 Jurassic-1 (Liu, Yang and Liao, 2024) 1
21. BERT (Villmow, et al., 2023) 1
22. CODEDOCTOR (Jesse, et al., 2023) 1
23. INCODER (Jesse, et al., 2023) 1
24. GRAPHCODEBERT(Jesse, et al., 2023) 1
25. StarChat-Beta (Fang, et al., 2023) 1
26. Phi-2 (Yin, Ni and Wang, 2024) 1
27. OpenAI Davinci (Venkatesh, et al., 2024) 1
28. Vicuna (Omar and Shiaeles, 2023) 1
LLMs: Large language models

known to enhance precision and efficacy by reducing false
positives and false negatives in bug detection, malicious
code detection, and even vulnerability detection. Their
scope of usage expands within programming education for
real-time error checking and explanation purposes and even

cybersecurity for aiding in the detection and remediation of
vulnerabilities.

Fig. 3 displays the companies that contributed toward
LLMs development which suggests the scope of activity
and engagement. OpenAI is leading the list by boosting
8 LLMs, much higher than the other prominent companies
including Google, Hugging Face, Meta Microsoft, and
Salesforce who have only made 2 LLMs each. This highlight
gap clearly indicates openness toward capital and optimism
toward supporting the research and development of LLMs.
Hence, further solidifying the statement of America being
proactive on AI research. The data reveals the rapid changing
competitive landscape of LLMs development where OpenAI
holds the front line in production, and the other groups have a
significantly lesser but steady presence. This gap could mean
a change in primary research objectives, budgetary spending,
or competitive practices for progressing AI technology.

B. Baseline Static Code Analysis Tools (RQ2)
Table III presents the use of different static code analysis

tools outlined in the academic articles, with a particular focus
on their application and frequency. Programming mistake

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 257

Table III
Static Code Analysis Tools

S. No. Tool Corresponding papers Total
papers

1. PMD (Souma, et al., 2023), (Sikand, et al., 2024),
(Guo, et al., 2023b)

3

2. SonarQube (Guo, et al., 2023b), (Mohajer, et al., 2023) 2
3. Simian (Souma, et al., 2023) 1
4. Custom static

analysis tool
(Di, et al., 2023) 1

5. Static analyzer (Haindl and Weinberger, 2024) 1
6. PyTorch (Haindl and Weinberger, 2024) 1
7. LLB (Li and Shan, 2023) 1
8. FindBugs (Guo, et al., 2023b) 1
9. Coverity (Guo, et al., 2023b) 1
10. TECA (Guo, et al., 2023b) 1
11. Rust-code-

analysis
(Ardito, Ballario and Valsesia, 2023) 1

12. CodeQL (Mohajer, et al., 2023) 1
13. Infer (Gonzalez-Barahona, 2024) 1
14. PyCG (Omar and Shiaeles, 2023) 1
15. HeaderGen (Omar and Shiaeles, 2023) 1
16. TypeEvalPy (Omar and Shiaeles, 2023) 1

Fig. 3. Company contributing to large language models development.

detector (PMD, henceforth) emerges as the most widely cited
tool, appearing in three papers, suggesting its effectiveness
in code analysis and bug detection. SonarQube, cited in two
papers, illustrates its capability in continuously monitoring
of code quality. Simian, Static Analyzer, and Pytorch receive
single mentions, reflecting their specialized use cases. More
advanced tools, such as PyCG and HeaderGen indicate
growing attention toward domain and language-specific static
analysis, especially in Python and C++.

PMD is considered one of the most widely used static
code analysis tools due to several critical factors. It
covers a number of programming languages, such as Java,
JavaScript, Apex, and PLSQL, which makes it very flexible
and appropriate for a wide range of tasks. Another factor is
that PMD is highly configurable which allows a great deal
of customization enabling developers to create new rule sets
or change existing ones to particular coding standards and
best practices (AlOmar and Mkaouer, 2024). This flexibility
ensures that each development team can adjust the processes
according to their specific needs. In addition, PMD is
available as an open-source tool which enables people to

improve it and make it better and more sophisticated than
ever. The ability to detect code duplication, dead variables,
and potential bugs assists to improve the quality and longevity
of the code. PMD also works with other popular build tools
and IDEs, which makes it easy to use in various development
environments. Together, all these factors combined with an
active community and frequent releases increase PMD’s
recognition as one of the best static code analysis tools.

C. Target Programming Languages (RQ3)
Table IV presents the focus of research regarding the

target programming languages for static code analysis using
LLMs. The Java language was noted more often than other
languages, as it appeared in 22 of the examined papers,
while Python appeared in 17 and the C language in 14. Other
languages, such as C++ had a moderate representation, 10
papers.

In contrast, languages, such as Swift, Kotlin, and Go
appear in only 2 papers each, while niche or specialized
languages, including Solidity, Ruby, Rust, Verilog, PHP,
Objective-C, SQL, Perl, Scala, and R, are mentioned in
just 1 paper each. These findings highlight the prominence
of widely adopted languages, such as Java and Python in
research contexts, particularly in leveraging LLMs for tasks,
such as bug detection, vulnerability identification, and code
comprehension through static code analysis. Java and Python
are the most studied programming languages in static code
analysis due to their widespread use, mature ecosystems,
and suitability for analysis. Java’s prevalence in enterprise
systems and Android development, coupled with Python’s
dominance in data science, Machine Learning, and web
development, ensures their relevance in improving code
quality and security (Rahmaniar, 2024). Comprehensive
static code analysis tools, including PMD and SonarQube
for Java, as well as Pylint and Bandit for Python, bolstered
by engaged communities and enormous resources, enhance
both languages. The object-oriented structure and strong
typing of Java enable correct interpretation and analysis of
the program under consideration. In comparison, Python’s
dynamic features create unique challenges that nurture the
ingenuity of researchers. Furthermore, the active interest
from industry and academia, underlines the importance
of these programming paradigms for static code analysis
research. The limited scope of representation of the other
general languages or domain-specific languages suggests
a reasonable avenue for subsequent research regarding the
potential of LLMs in using them.

D. Common Static Code Analysis Tasks (RQ4)
Numerous tasks in the collected papers have been identified

regarding the static code analysis and applied LLMs are
presented in Table V. The greatest number of papers that is
12, has been published in the area of security weaknesses
and the attempts that are done to discover and resolve these
issues in the code. Static behavior analysis and code quality
estimation and control are fundamental parts of 10 papers
that concern the understanding of program behavior and

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

258 http://dx.doi.org/10.14500/aro.12082

TABLE IV
Programming Language used in Studies

S. No. Programming
language

Corresponding papers Total Papers

1. Java (Amburle, et al., 2024), (Li, et al., 2023), (Souma, et al., 2023), (Rahmaniar, 2024), (Gupta, et al., 2023), (Di, et al.,
2023), (Wadhwa, et al., 2024), (Sikand, et al., 2024), (Yuan, et al., 2024), (Pearce, et al., 2023), (Mahyari, 2024),
(Jesse, et al., 2023), (Ignatyev, et al., 2024), (Bajpai, et al., 2024), (Li and Shan, 2023), (Ságodi, Siket and Ferenc,
2024), (Guo, et al., 2023b), (Ardito, Ballario and Valsesia, 2023), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024),
(Akuthota, et al., 2023), (Moratis, et al., 2024)

22

2. Python (Amburle, et al., 2024), (Souma, et al., 2023), (Rahmaniar, 2024), (Gupta, et al., 2023), (Di, et al., 2023), (Hajipour,
et al., 2024), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Pearce, et al., 2023), (Liu, Yang and Liao,
2024), (Guo, et al., 2023a), (Jesse, et al., 2023), (Fang, et al., 2023), (Hossain, et al., 2024), (Mohajer, et al., 2023),
(Venkatesh, et al., 2024), (Omar and Shiaeles, 2023)

17

3. C (Amburle, et al., 2024), (Gupta, et al., 2023), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Liu, Yang and
Liao, 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Villmow, et al., 2023), (Fang, et al., 2023), (Hossain, et al., 2024),
(Guo, et al., 2023b), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

14

4. C++ (Wadhwa, et al., 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Jesse, et al., 2023), (Bajpai, et al., 2024), (Ságodi, Siket
and Ferenc, 2024), (Guo, et al., 2023b), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

10

5. JavaScript (Souma, et al., 2023), (Rahmaniar, 2024), (Wadhwa, et al., 2024), (Mahyari, 2024), (Fang, et al., 2023),
(Hossain, et al., 2024)

6

6. C# (Haindl and Weinberger, 2024), (Mahyari, 2024), (Bajpai, et al., 2024), (Mathews, et al., 2024) 4
7. Swift (Wadhwa, et al., 2024), (Mahyari, 2024) 2
8. Kotlin (Wadhwa, et al., 2024), (Mahyari, 2024) 2
9. Go (Mahyari, 2024), (Venkatesh, et al., 2024) 2
10. Solidity (Amburle, et al., 2024) 1
11. Ruby (Wadhwa, et al., 2024) 1
12. Rust (Wadhwa, et al., 2024) 1
13. Verilog (Liu, Yang and Liao, 2024) 1
14. PHP (Mahyari, 2024) 1
15. Objective-C (Mahyari, 2024) 1
16. SQL (Mahyari, 2024) 1
17. Perl (Mahyari, 2024) 1
18. Scala (Mahyari, 2024) 1
19. R (Mahyari, 2024) 1

TABLE V
Addressed Tasks in Academic Paper on Static Code Analysis using LLMs

S. No. Type of task Corresponding papers Total papers
1. Security vulnerability detection (Li, et al., 2023), (AlOmar and Mkaouer, 2024), (Liu, Yang and Liao, 2024),

(Guo, et al., 2023a), (Villmow, et al., 2023), (Mathews, et al., 2024), (Li and Shan,
2023), (Hossain, et al., 2024), (Yin, Ni and Wang, 2024), (Venkatesh, et al., 2024),
(Akuthota, et al., 2023), (Moratis, et al., 2024)

12

2. Static behavior analysis (Amburle, et al., 2024), (Di, et al., 2023), (Fang, et al., 2023), (Bajpai, et al., 2024),
(Hossain, et al., 2024), (Guo, et al., 2023b), (Ardito, Ballario and Valsesia, 2023),
(Mohajer, et al., 2023), (Gonzalez-Barahona, 2024), (Omar and Shiaeles, 2023)

10

3. Code quality assurance (Souma, et al., 2023), (Di, et al., 2023), (Sikand, et al., 2024), (Yuan, et al., 2024),
(Pearce, et al., 2023), (Jesse, et al., 2023), (Ságodi, Siket and Ferenc, 2024), (Guo,
et al., 2023b), (Ardito, Ballario and Valsesia, 2023), (Mohajer, et al., 2023)

10

4. Bug detection (Gupta, et al., 2023), (Sikand, et al., 2024), (Liu, Yang and Liao, 2024), (Ignatyev,
et al., 2024), (Bajpai, et al., 2024), (Purba, et al., 2023)

6

5. Syntax understanding (Amburle, et al., 2024) 1
6. Variable misuse detection (Haindl and Weinberger, 2024) 1
7. Adherence to green coding rules (Rahmaniar, 2024) 1
8. Logical reasoning in error detection (Hajipour, et al., 2024) 1
9. Identifying violations (naming conventions) (Jesse, et al., 2023) 1

the quality control standards, respectively. Six papers are
dedicated to bug detection highlighting the ongoing approach
of seeking errors in different phases of software development
and correcting them.

There are relatively few studies looking at other more
specific issues, such as understanding syntax, detecting
variable misuses, and reasoning for errors. These suggest
very specific research areas. It also shows research activities,

such as compliance with the green coding initiative, breaches
of naming conventions, and the reasoning logic behind
error detection, all of which are performed by individual
researchers. These definitional boundaries mark some of the
newer and broader static code analysis challenges where
researchers are exploring sustainable coding practices and
improving sustainability and maintainability in software
development. The complex nature of static code analysis

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 259

and its importance in various software engineering fields is
exhibited in these different sets of tasks.

E. Evaluation Metrics (RQ5)
Table VI presents the common metrics used to evaluate

the abilities of LLMs for static code analysis. Accuracy is
the most often reported metric, cited in 11 papers, which
illustrates its importance in measuring the effectiveness
of these AI models. Several papers refer to the F1 Score,
manual verification, precision, and false positive rate as terms
of importance each in the balance of capturing problems and
warnings. The specific metrics, such as recall, match rate, and
true positive rate provide deeper insight into how well these
models perform in detecting important issues (Liu, Yang and
Liao, 2024). Some metrics are domain-specific metrics, such
as Green Code Compliance Percentage, Rule Satisfaction
Rates, and Security Correctness that focus on sustainability
and security. Syntax error counts, repair success rates, and
functional correctness measures highlight the significance of
evaluating code quality and the effectiveness of automatic
code repair. The complexity metrics, such as Cyclomatic
Complexity, Cognitive Complexity, and Weighted Methods
per Class assess the structural and maintainability aspect
of the code. Novel approaches to code comparison and
evaluation are captured by distinctive measures, such as the
DiffBLEU score, Levenshtein Distance, and Jaccard Index.
As for the measurement, the most frequent usage is for the F1
score and accuracy, which can provide a relatively objective
and comprehensive evaluation. Accuracy is defined as the
number of correctly identified issues (including both true
positives and true negatives) divided by all predictions made,
thus offering a complete picture of a tool’s effectiveness.

The datasets used in static code analysis often show an
uneven distribution between genuine issues and non-problems
because they contain many more instances of the latter
(negatives). This disparity renders accuracy inadequate since
a tool could achieve elevated accuracy by only predicting the
majority class (non-issues) and fail to detect actual problems
(Ignatyev, et al., 2024). The F1 score addresses this challenge
because it merges both accuracy and recall into one single

value (Yin, Ni and Wang, 2024). The precision metric defines
the ratio of actual problem instances correctly identified
from total expected problem instances to address false
positives; recall defines the ratio of correctly detected real
issues to prevent false negatives. The F1 score serves as the
harmonic mean of precision and recall and provides a good
balance between them, which makes it particularly valuable
for evaluating static code analysis tools since both types
of errors (false positives and negatives) can produce major
consequences. The integrated use of accuracy and the F1
score together can be used to assess both the reliability and
effectiveness of static code analysis. The range of metrics
applied shows both the extensive research in static code
analysis and its broad application to every field of software
engineering.

Fig. 4 highlights how academic papers are distributed
across research categories, with performance-related studies
leading the way due to 51 papers focusing on tool and model
efficiency assessment. Code quality ranks as the second most
investigated domain, with 18 papers, indicating a significant
focus on maintainability and adherence to best practices.
Categories, such as code analysis, code complexity, and code
structure, each represented by 5–7 papers, highlight targeted
efforts to understand software behavior and architecture. Less
commonly addressed topics, including similarity, security,
code size, process success, bug analysis, and test coverage,
each account for fewer than five papers, indicating niche but
essential areas of study. This distribution underscores the
diverse priorities within the field of static code analysis and
software engineering research.

F. Common Prompting Strategies (RQ6)
Table VII categorizes various prompting strategies for

LLMs across the collected papers. Among the prompting
techniques, Structured Prompting is the most widely used,
appearing in 8 papers. This technique likely involves
designing prompts with a defined structure to enhance a
model’s performance. Standardized or Basic Prompting
follows closely, with 7 associated papers, highlighting its
role as a fundamental approach in prompt design. Few-shot

Fig. 4. Number of papers categorized by type of evaluation metrics.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

260 http://dx.doi.org/10.14500/aro.12082

TABLE VI
Commonly used evaluation metrics

S. No. Metric Corresponding papers Total papers
1. Accuracy (Amburle, et al., 2024), (Gupta, et al., 2023), (Hajipour, et al., 2024), (Wadhwa, et al., 2024), (Haindl and

Weinberger, 2024), (Guo, et al., 2023a), (Villmow, et al., 2023), (Yin, Ni and Wang, 2024), (Gonzalez-
Barahona, 2024), (Akuthota, et al., 2023), (Moratis, et al., 2024)

11

2. F1 score (Amburle, et al., 2024), (Hajipour, et al., 2024), (Guo, et al., 2023a), (Bajpai, et al., 2024), (Yin, Ni and Wang,
2024), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

8

3. Manual verification (Li, et al., 2023), (Gupta, et al., 2023), (Sikand, et al., 2024), (Pearce, et al., 2023), (Mathews, et al., 2024),
(Ságodi, Siket and Ferenc, 2024), (Mohajer, et al., 2023)

7

4. Precision (Guo, et al., 2023a), (Bajpai, et al., 2024), (Hossain, et al., 2024), (Yin, Ni and Wang, 2024), (Gonzalez-
Barahona, 2024), (Venkatesh, et al., 2024), (Akuthota, et al., 2023)

7

5. False positive (Haindl and Weinberger, 2024), (Li and Shan, 2023), (Guo, et al., 2023b), (Yin, Ni and Wang, 2024),
(Mohajer, et al., 2023), (Venkatesh, et al., 2024)

6

6. Recall (Guo, et al., 2023a), (Yin, Ni and Wang, 2024), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024),
(Akuthota, et al., 2023)

5

7. Match rate (Mahyari, 2024), (Fang, et al., 2023), (Ignatyev, et al., 2024), (Bajpai, et al., 2024), (Omar and Shiaeles, 2023) 5
8. Number of rule

violations
(Souma, et al., 2023), (Yuan, et al., 2024), (Mohajer, et al., 2023) 3

9. Time to fix issues (Sikand, et al., 2024), (Mathews, et al., 2024), (Li and Shan, 2023) 3
10. True positive (Li and Shan, 2023), (Guo, et al., 2023b), (Venkatesh, et al., 2024) 3
11. Syntax error counts (Di, et al., 2023), (Gonzalez-Barahona, 2024) 2
12. Success rate of LLM (Sikand, et al., 2024), (Hossain, et al., 2024) 2
13. False negative (Haindl and Weinberger, 2024), (Venkatesh, et al., 2024) 2
14. Security correctness (Liu, Yang and Liao, 2024), (Li and Shan, 2023) 2
15. Soundness (Omar and Shiaeles, 2023) 1
16. Completeness (Omar and Shiaeles, 2023) 1
17. Jaccard index (Amburle, et al., 2024) 1
18. Number of prompts (Souma, et al., 2023) 1
19. Green code

compliance
percentage

(Rahmaniar, 2024) 1

20. Rule satisfaction rates (Di, et al., 2023) 1
21. Plagiarism detection (Di, et al., 2023) 1
22. Pass@k (Hajipour, et al., 2024) 1
23. Number of discovered

vulnerabilities
(AlOmar and Mkaouer, 2024) 1

24. Top-k accuracy (Yin, Ni and Wang, 2024) 1
25. Cyclomatic

complexity
(Yuan, et al., 2024) 1

26. Cognitive complexity (Yuan, et al., 2024) 1
27. Correctness metrics (Pearce, et al., 2023) 1
28. Coverage metrics (Pearce, et al., 2023) 1
29. Functional

correctness
(Liu, Yang and Liao, 2024) 1

30. Repair success rate (Liu, Yang and Liao, 2024) 1
31. BLEU (Mahyari, 2024) 1
32. Mean (Jesse, et al., 2023) 1
33. Bug/patch ratio (Ignatyev, et al., 2024) 1
34. Logical lines of code (Ságodi, Siket and Ferenc, 2024) 1
35. Number of statements (Ságodi, Siket and Ferenc, 2024) 1
36. McCabe cyclomatic

complexity
(Ságodi, Siket and Ferenc, 2024) 1

37. Nesting level (Ságodi, Siket and Ferenc, 2024) 1
38. Coding smells (Ságodi, Siket and Ferenc, 2024) 1
39. ABC metric (Ardito, Ballario and Valsesia, 2023) 1
40. Weighted methods

per class
(Ardito, Ballario and Valsesia, 2023) 1

41. Number of public
methods

(Ardito, Ballario and Valsesia, 2023) 1

42. Number of public
attributes

(Ardito, Ballario and Valsesia, 2023) 1

43. Class operation
accessibility

(Ardito, Ballario and Valsesia, 2023) 1

44. Class data
accessibility

(Ardito, Ballario and Valsesia, 2023) 1

45. Area under the curve (Akuthota, et al., 2023) 1

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 261

TABLE VII
Distribution prompting strategies

S. No. Prompt type Corresponding papers Total papers
1. Structured prompting (Souma, et al., 2023), (Liu, Yang and Liao, 2024), (Fang, et al., 2023), (Ignatyev, et al., 2024),

(Mathews, et al., 2024), (Mohajer, et al., 2023), (Venkatesh, et al., 2024), (Moratis, et al., 2024)
8

2. Standardized/basic prompting (Hajipour, et al., 2024), (Guo, et al., 2023a), (Mahyari, 2024), (Fang, et al., 2023), (Bajpai, et al.,
2024), (Li and Shan, 2023), (Ságodi, Siket and Ferenc, 2024)

7

3. Few-shot prompting (Amburle, et al., 2024), (Wadhwa, et al., 2024), (AlOmar and Mkaouer, 2024), (Sikand, et al., 2024),
(Li and Shan, 2023), (Gonzalez-Barahona, 2024)

6

4. Zero-shot prompting (Amburle, et al., 2024), (Wadhwa, et al., 2024), (Sikand, et al., 2024), (Gonzalez-Barahona, 2024) 4
5. Iterative prompting (Souma, et al., 2023), (Pearce, et al., 2023), (Purba, et al., 2023), (Omar and Shiaeles, 2023) 4
6. One-shot prompting (Sikand, et al., 2024), (Gonzalez-Barahona, 2024), (Omar and Shiaeles, 2023) 3
7. Task-specific prompting (Rahmaniar, 2024), (Yin, Ni and Wang, 2024) 2
8. CoT prompting (Hajipour, et al., 2024), (Guo, et al., 2023a) 2
9. Natural language descriptions (Pearce, et al., 2023), (Ignatyev, et al., 2024) 2
10. High-level query language (Di, et al., 2023), (Bajpai, et al., 2024) 2
11. Temporal and spatial context (Bajpai, et al., 2024) 1
12. Retrieval-augmented generation (Li and Shan, 2023) 1
13. Scenario-based prompting (Mahyari, 2024) 1
14. Correction prompt (Hajipour, et al., 2024) 1

Prompting, where the model is given limited examples, is
addressed in 6 papers, while Zero-shot Prompting, where the
model is given no examples, is used in 4 papers. Iterative
Prompting, which involves multi-step refinement, appears
in 4 papers. One-Shot Prompting has 3 associated papers,
indicating a growing interest in specific task-tailored or
stepwise reasoning approaches. Less frequently studied
techniques include Task-Specific Prompting, Chain-of-
Thought (CoT, henceforth) Prompting, Natural Language
Descriptions, and High-Level Query Language, each
appeared in 2 papers. Niche methods, such as Temporal and
Spatial Context, Retrieval-Augmented Generation, Scenario-
Based Prompting, and Correction Prompts are mentioned
in 1 paper each, reflecting emerging or specialized areas of
research in LLM prompting strategies in the case of static
code analysis.

Structured Prompting, Standardized/Basic Prompting, and
Few-shot Prompting are the most widely used prompting
strategies due to their effectiveness, simplicity, and
adaptability to the static code analysis unique challenges.
Structured Prompting is advantageous as it offers a
coherent, systematic framework for directing models in code
analysis, which corresponds effectively with the ordered
characteristics of programming languages. This approach
enables the breakdown of complex code analysis tasks into
smaller components, which improve the model’s ability to
detect issues, such as syntax errors, code smells, or security
vulnerabilities (Jesse, et al., 2023). Standardized/Basic
Prompting is chosen because it is straightforward and can be
duplicated because it involves specific directions that apply
from one codebase to another and from one analytical task
to another (Mathews, et al., 2024). This sets up a trustworthy
standard for evaluating static code analysis techniques. The
method is exceptionally effective for static code analysis
because it allows models to learn from limited examples,
which makes it very useful when datasets are small or when
shifting between coding languages or styles. These strategies
together meet the needs for static code analysis precision,

scalability, and adaptability, which make them the most
common approaches in research. This distribution shows the
scope and distinctiveness of prompt engineering strategies
that are being studied in the related works.

G. Common Limitations and Challenges (RQ7)
In this survey, the following challenges and constraints on

the use of LLMs in static code analysis are identified:
1. High false positive rates: In the static code analysis,

LLMs tend to produce many false positives that require a
thorough human verification process to detect actual issues.
Some of the related challenges include; how to detect Null
Dereferences and Resource Leaks among others (AlOmar
and Mkaouer, 2024), (Guo, et al., 2023b), (Mohajer, et al.,
2023), (Gonzalez-Barahona, 2024), (Venkatesh, et al., 2024).

2. Token and context limitations: LLMs have limitations on the
input size which makes them not very effective in handling
large codebases or complex dependencies at a time. For
example, dealing with imported module code or checking
through large files is challenging (Amburle, et al., 2024),
(Wadhwa, et al., 2024), (Sikand, et al., 2024), (Yuan, et al.,
2024), (Liu, Yang and Liao, 2024), (Jesse, et al., 2023),
(Fang, et al., 2023), (Mathews, et al., 2024), (Li and Shan,
2023), (Mohajer, et al., 2023), (Gonzalez-Barahona, 2024).

3. Data limitations: It is a common issue to find that the quality
and diversity of training data sets directly impact the model’s
generality and accuracy. The reliance on databases, such as
CVE, which are prone to errors, decreases the accuracy of
vulnerability detection (Amburle, et al., 2024), (Rahmaniar,
2024), (Hajipour, et al., 2024), (Haindl and Weinberger,
2024), (Guo, et al., 2023a).

4. Non-deterministic outputs: Uncertainty about how many
times LLMs will produce different outcomes from multiple
executions for the same input creates problems when
integrating them into static code analysis frameworks.
For instance, making coding integration and development
workflows deterministic is difficult due to the variability
result (Rahmaniar, 2024), (Bajpai, et al., 2024).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

262 http://dx.doi.org/10.14500/aro.12082

5. Computational costs: The high resource requirements
pose a significant problem for implementing large-scale
code analysis with LLMs and the need for fine-tuning
that complicates this issue further. Flow-sensitive pointer
information and extensive call graphs demand substantial
processing resources to address them (Bajpai, et al., 2024),
(Venkatesh, et al., 2024), (Omar and Shiaeles, 2023).

6. Model hallucinations and assumptions: Sometimes LLMs
produce wrong or overconfident outcomes because of built-
in biases and limited understanding of context. For instance,
when doing bug detection tasks, they frequently hallucinate
or miss dependencies (Amburle, et al., 2024), (Li and Shan,
2023), (Gonzalez-Barahona, 2024).

7. Scalability and adaptability issues: LLMs struggle to
generalize across different languages, ecosystems, or
complex design patterns. For instance, they have a limited
capacity to preserve language-specific semantics while doing
cross-language analysis (Gupta, et al., 2023), (Villmow,
et al., 2023).

V. Future Directions of Research
Examining the collected papers reveals that there are many

research gaps to be addressed in using LLMs for static code
analysis, which can be summarized as follows:
1. Improving prompt engineering

•	 Researchers can develop automated prompt
generating strategies to tailor prompts for certain
activities (such as vulnerability detection and bug
fixing) (Li, et al., 2023).

•	 To increase accuracy and reasoning in challenging tasks,
researchers can investigate iterative prompting and CoT
prompting (Li, et al., 2023).

•	 Researchers can examine task-specific prompt templates
for various analytical tasks and programming languages
(Liu, Yang and Liao, 2024).

2. Fine-tuning LLMs for specific tasks
•	 To enhance the performance, researchers can fine-tune

LLMs using domain-specific datasets (such as code
vulnerabilities and static analysis warnings) (Hossain,
et al., 2024).

•	 To improve accuracy and efficiency, researchers
can develop hybrid models that incorporate LLMs
in traditional static analysis techniques (Omar and
Shiaeles, 2023).

•	 To allow LLMs to manage several static code analysis
tasks at once, researchers can investigate multi-task
learning (Yin, Ni and Wang, 2024).

3. Handling complex and obfuscated code
•	 Researchers can develop techniques to de-obfuscate

code before analysis using LLMs (Fang, et al., 2023).
•	 Researchers can integrate graph-based representations

(e.g., control flow graphs and data flow graphs) to
help LLMs understand complex code structures
(Hossain, et al., 2024).

•	 Researchers can explore multi-agent systems where
LLMs collaborate with other tools to analyze
interconnected code components (Bajpai, et al., 2024).

4. Reducing false positives and improving precision
•	 Researchers can combine LLMs with rule-based systems

or ML classifiers to filter out false positives (Guo, et al.,
2023b).

•	 Researchers can use ranking mechanisms to prioritize
the most likely true positives for developer review
(Mohajer, et al., 2023).

•	 Researchers can develop explainable AI techniques to
help developers understand why a particular issue was
flagged (Wadhwa, et al., 2024).

5. Expanding language and framework support
•	 Researchers can extend LLM-based static analysis

to less common programming languages (e.g., Rust,
Kotlin, Swift, Arduino, etc.) (Guo, et al., 2023a).

•	 Researchers can develop cross-language LLMs-based
analysis tools that can handle multi-language projects
(Guo, et al., 2023a).

•	 Researchers can explore support for domain-specific
languages (e.g., solidity for smart contracts) (Ardito,
Ballario and Valsesia, 2023).

6. Integration with development workflows
•	 Researchers can develop IDE plugins that leverage

LLMs for real-time code analysis and feedback (Bajpai,
et al., 2024).

•	 Researchers can create automated tools for continuous
monitoring of code quality and vulnerabilities using
LLMs (Akuthota, et al., 2023).

•	 Researchers can explore collaborative workflows where
LLMs assist developers in debugging, refactoring, and
code review (Bajpai, et al., 2024).

7. Addressing ethical and security concerns
•	 Researchers can develop secure coding guidelines for

LLM-generated code to prevent vulnerabilities (Purba,
et al., 2023).

•	 Researchers can investigate adversarial training to make
LLMs more robust against malicious inputs (Li and
Shan, 2023).

•	 Researchers can ensure data privacy by avoiding the
use of proprietary or sensitive code in LLM training
datasets (Akuthota, et al., 2023).

8. Scaling to large codebases
•	 Researchers can develop chunking strategies to break

down large codebases into manageable segments for
analysis (Bairi, et al., 2024).

•	 Researchers can use hierarchical models that analyze
code at multiple levels of granularity (e.g., file-level,
function-level, etc.) (Ignatyev, et al., 2024).

•	 Researchers can explore distributed computing
techniques to scale LLM-based analysis to enterprise-
level projects (Venkatesh, et al., 2024).

9. Benchmarking and standardization
•	 Researchers can produce uniform datasets and metrics

that enable effective assessment of LLM performance
in static code analysis tasks (Yin, Ni and Wang, 2024).

•	 Researchers can establish assessment tools that report on
both primary product behavior and secondary qualities
including code readability and maintainability (Ságodi,
Siket and Ferenc, 2024).

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 263

•	 Researchers can foster open-source contributions
to aggregate research data and materials (Omar and
Shiaeles, 2023).

10. Enhancing explainability and developer trust
•	 Researchers can design tools that give thorough

explanations for the LLM-produced analysis findings
(Wadhwa, et al., 2024).

•	 Researchers can use interactive interfaces where
developers can request further context or clarification
from LLMs (Bajpai, et al., 2024).

•	 Researchers can study how human-loop systems
function to cooperate between developers and
LLMs to improve analysis product accuracy
(Mohajer, et al., 2023).

11. Exploring hybrid approaches
•	 Researchers can improve precision by integrating LLMs

with symbolic execution, abstract interpretation, or
formal methods (Omar and Shiaeles, 2023).

•	 Researchers can integrate LLMs with graph-based
models (e.g., GraphCodeBERT) for better representation
of code dependencies (Hossain, et al., 2024).

The future of static code analysis using LLMs lies in
improving prompt engineering, fine-tuning models for
specific tasks, reducing false positives, and integrating
LLMs into development workflows. By combining LLMs
with traditional static analysis tools and exploring hybrid
approaches, researchers can unlock the full potential of
LLMs for different static code analysis tasks.

VI. Threat to Validity
The results of surveys may be impacted by many factors.

Thus, to prevent validity risks, the following steps were taken
into consideration for this paper:
•	 Finding related papers: The availability of all relevant papers

cannot be guaranteed. To find the related papers, a search
string containing several word synonyms was employed, and
many well-known literature databases were employed. There
could yet be some missing papers, though. The snowballing
search strategy was used to mitigate this issue by lowering
the likelihood of missing related papers.

•	 Accuracy of data extraction: When extracting data from
the chosen papers, several errors might happen. The data
extraction procedure was carried out by hand to address this
threat. The spreadsheet also made advantage of Microsoft
Excel’s automatic mining and filtering features. After that,
the outcomes of the two approaches were contrasted to
identify any differences and create a final Excel document
with all the correct extracted data.

•	 Study reproducibility: A further threat is that if this study is
carried out or replicated, other researchers could get similar
findings. Every stage of the research approach used and
carried out in this study was thoroughly explained to address
this threat (see Section III).

VII. Conclusion
This survey highlights the transformative role of LLMs in
static code analysis, offering a fresh perspective on leveraging
LLMs to address longstanding challenges in software quality,
security, and maintainability. By synthesizing insights from
a diverse range of studies, we identified how LLMs excel
in tasks, such as vulnerability detection, bug fixing, and
code quality assurance, often complementing or surpassing
traditional static analysis tools. Key strengths include their
ability to understand complex code semantics and adapt to
diverse programming languages and contexts. However,
integrating LLMs into static code analysis workflows is
not without challenges. High false positive rates, token
size constraints, and computational costs remain significant
barriers to widespread adoption. Looking ahead, future
research should focus on refining prompt engineering,
exploring underrepresented programming languages and
niche tasks, and improving scalability to support large
codebases. In addition, expanding benchmarks and real-world
case studies will further validate the practical utility of LLMs
in static code analysis. As the field evolves, LLMs have the
potential to redefine software engineering practices, making
development processes more efficient, secure, and adaptive
to the complexities of modern codebases and software
applications. By bridging the gap between traditional static
code analysis methods and AI-driven solutions, this study
aims to inspire researchers and practitioners to unlock the full
potential of LLMs, contributing to the ongoing advancement
of secure and high-quality software development.

References
Acl, A., 2024. An Empirical Study of LLM for Code Analysis : Understanding
Syntax and Semantics. ACL ARR. Available from: https://openreview.net/
forum?id=yezazwj1yf> [Last assessed on 2025 Jan 04].

Akuthota, V., Kasula, R., Sumona, S.T., Mohiuddin, M., Reza, M.T., and
Rahman, M.M., 2023. Vulnerability detection and monitoring using LLM.
In: Proceedings of 2023 IEEE 9th International Women in Engineering (WIE)
Conference on Electrical and Computer Engineering, WIECON-ECE 2023,
IEEE, United States, pp.309-314.

AlOmar, E.A., and Mkaouer, M.W., 2024. Cultivating software quality
improvement in the classroom: An experience with chatGPT. In:
2024 36th International Conference on Software Engineering Education and
Training (CSEE&T). IEEE, United States, pp.1-10.

Amburle, A., Almeida, C., Lopes, N., and Lopes, O., 2024. AI based code
error explainer using gemini model. In: 2024 3rd International Conference on
Applied Artificial Intelligence and Computing (ICAAIC). IEEE, United States:
pp.274-278.

Ardito, L., Ballario, M., and Valsesia, M., 2023. Research, Implementation
and Analysis of Source Code Metrics in Rust-Code-Analysis. In: 2023 IEEE
23rd International Conference on Software Quality, Reliability, and Security
(QRS). IEEE, United States, pp.497-506.

Bairi, R., Sonwane, A., Kanade, A., Vageesh, D.C., Iyer, A., Parthasarathy, S.,
Rajamani, S., Ashok, B., and Shet, S., 2024. Codeplan: Repository-level coding
using LLMs and planning. Proceedings of the ACM on Software Engineering,
1, pp.675-698.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

264 http://dx.doi.org/10.14500/aro.12082

Bajpai, Y., Chopra, B., Biyani, P., Aslan, C., Coleman, D., Gulwani, S., Parnin, C.,
Radhakrishna, A., and Soares, G., 2024. Let’s fix this together: Conversational
debugging with github copilot. In: 2024 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, United States, pp.1-12.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., and Khalil, M.,
2007. Lessons from applying the systematic literature review process within
the software engineering domain. Journal of Systems and Software, 80(4),
pp.571-583.

Chen, Y., Sun, W., Fang, C., Chen, Z., Ge, Y., Han, T., Zhang, Q., Liu, Y.,
Chen, Z., and Xu, B., 2024. Security of Language Models for Code: A Systematic
Literature Review. Vol. 1. Available from: https://arxiv.org/abs/2410.15631 [Last
assessed on 2025 Jan 04].

Di, P., Li, J., Yu, H., Jiang, W., Cai, W., Cao, Y., Chen, C., Chen, D., Chen, H.,
Chen, L., Fan, G., Gong, J., Gong, Z., Hu, W.,… & Zhu, X., 2023. CodeFuse-
13B: A pretrained multi-lingual code large language model. Proceedings of the
46th International Conference on Software Engineering: Software Engineering
in Practice. ICSE, New Delhi, pp.418-429.

Fang, C., Miao, N., Srivastav, S., Liu, J., Zhang, R., Fang, R., Asmita, Tsang, R.,
Nazari, N., Wang, H., and Homayoun, H., 2023. Large Language Models for
Code Analysis: Do LLMs Really do Their Job? Available from: https://arxiv.org/
abs/2310.12357 [Last assessed on 2025 Jan 04].

Gong, J., Voskanyan, V., Brookes, P., Wu, F., Jie, W., Xu, J., Giavrimis, R.,
Basios, M., Kanthan, L., and Wang, Z., 2025. Language Models for Code
Optimization: Survey, Challenges and Future Directions. Vol. 1. ACM
Computing Surveys. [arxiv Preprint]. Available from: https://arxiv.org/
abs/2501.01277 [Last assessed on 2025 Jan 04].

Gonzalez-Barahona, J.M., 2024. Software development in the age of LLMs
and XR. In: Proceedings of the 1st ACM/IEEE Workshop on Integrated
Development Environments. ACM, New York, USA, pp.66-69.

Guo, Q., Cao, J., Xie, X., Liu, S., Li, X., Chen, B., and Peng, X., 2023a. Exploring
the potential of chatGPT in automated code refinement: An empirical study.
In: Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. pp.1-13.

Guo, Z., Tan, T., Liu, S., Liu, X., Lai, W., Yang, Y., Li, Y., Chen, L., Dong, W.,
and Zhou, Y., 2023b. Mitigating false positive static analysis warnings: Progress,
challenges, and opportunities. IEEE Transactions on Software Engineering,
49(12), pp.5154-5188.

Gupta, N.K., Chaudhary, A., Singh, R., and Singh, R., 2023. ChatGPT: Exploring
the capabilities and limitations of a large language model for conversational AI.
In: 2023 International Conference on Advances in Computation, Communication
and Information Technology (ICAICCIT). IEEE, United States, pp.139-142.

Haindl, P., and Weinberger, A.G., 2024. Does chatGPT help novice programmers write
better code? Results from static code analysis. IEEE Access, 12, pp.114146-114156.

Hajipour, H., Hassler, K., Holz, T., Schönherr, L., and Fritz, M., 2024.
CodeLMSec benchmark: Systematically evaluating and finding security
vulnerabilities in black-box code language models. In: 2024 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML). IEEE, United States,
pp.684-709.

Hassan, H.B., Sarhan, Q.I., and Beszédes, Á., 2024. Evaluating python static
code analysis tools using FAIR principles. IEEE Access, 12, pp.173647-173659.

Hort, M., Grishina, A., and Moonen, L., 2023. An exploratory literature study on
sharing and energy use of language models for source code. In: 2023 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, United States, pp.1-12.

Hossain, A.A., Mithun Kumar, P.K., Zhang, J., and Amsaad, F., 2024. Malicious
code detection using LLM. In: NAECON 2024 - IEEE National Aerospace and
Electronics Conference. IEEE, United States, pp.414-416.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J.,
and Wang, H., 2023. Large Language Models for Software Engineering:
A Systematic Literature Review. pp.1-79. Available from: https://arxiv.org/

abs/2308.10620 [Last assessed on 2025 Jan 04].

Ignatyev, V.N., Shimchik, N.V., Panov, D.D., and Mitrofanov, A.A., 2024. Large
language models in source code static analysis. In: 2024 Ivannikov Memorial
Workshop (IVMEM). IEEE, United States, pp.28-35.

Jesse, K., Ahmed, T., Devanbu, P.T., and Morgan, E., 2023. Large language
models and simple, stupid bugs. In: 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). IEEE, United States,
pp.563-575.

Kotenko, I., Izrailov, K., and Buinevich, M., 2022. Static analysis of information
systems for IoT cyber security: A survey of machine learning approaches. Sensors
(Basel), 22(4), p.1335.

Li, H., and Shan, L., 2023. LLM-based vulnerability detection. In: 2023
International Conference on Human-Centered Cognitive Systems (HCCS).
IEEE, United States, pp.1-4.

Li, H., Hao, Y., Zhai, Y., and Qian, Z., 2023. Assisting static analysis with large
language models: A chatGPT experiment. In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, New York, USA, pp.2107-2111.

Liu, Z., Yang, Z., and Liao, Q., 2024. Exploration on prompting LLM with
code-specific information for vulnerability detection. Proceedings - 2024 IEEE
International Conference on Software Services Engineering, SSE 2024. IEEE,
United States, pp.273-281.

Louridas, P., 2006. Static code analysis. IEEE Software, 23(4), pp.58-61.

Mahyari, A.A., 2024. Harnessing the power of LLMs in source code vulnerability
detection. In: MILCOM 2024 - 2024 IEEE Military Communications Conference
(MILCOM). IEEE, United States, pp.251-256.

Mathews, N.S., Brus, Y., Aafer, Y., Nagappan, M., and McIntosh, S., 2024.
LLbezpeky: Leveraging Large Language Models for Vulnerability Detection.
Available from: https://arxiv.org/abs/2401.01269 [Last assessed on 2025 Jan 04].

Mohajer, M.M., Aleithan, R., Harzevili, N.S., Wei, M., Belle, A.B., Pham,
H.V., and Wang, S., 2023. SkipAnalyzer: A Tool for Static Code Analysis with
Large Language Models. Available from: https://arxiv.org/abs/2310.18532 [Last
assessed on 2025 Jan 04].

Moratis, K., Diamantopoulos, T., Nastos, D.N., and Symeonidis, A., 2024. Write
me this code: An analysis of chatGPT quality for producing source code. In:
Proceedings - 2024 IEEE/ACM 21st International Conference on Mining Software
Repositories, MSR 2024, pp.147-151.

Omar, M., and Shiaeles, S., 2023. VulDetect: A novel technique for detecting
software vulnerabilities using language models. In: 2023 IEEE International
Conference on Cyber Security and Resilience (CSR). IEEE, United States,
pp.105-110.

Pearce, H., Tan, B., Ahmad, B., Karri, R., and Dolan-Gavitt, B., 2023. Examining
zero-shot vulnerability repair with large language models. In: 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, United States, pp.2339-2356.

Petersen, K., Vakkalanka, S., and Kuzniarz, L., 2015. Guidelines for conducting
systematic mapping studies in software engineering: An update. Information and
Software Technology, 64(5), pp.1-18.

Purba, M.D., Ghosh, A., Radford, B.J., and Chu, B., 2023. Software vulnerability
detection using large language models. In: 2023 IEEE 34th International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE,
United States, pp.112-119.

Rahmaniar, W., 2024. ChatGPT for software development: Opportunities and
challenges. IT Professional, 26(3), pp.80-86.

Ramamoorthy, J., Gupta, K., Kafle, R.C., Shashidhar, N.K., and Varol, C.,
2024. A novel static analysis approach using system calls for linux IoT malware
detection. Electronics, 13(15), p.2906.

Ságodi, Z., Siket, I., and Ferenc, R., 2024. Methodology for code synthesis
evaluation of LLMs presented by a case study of chatGPT and copilot. IEEE

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12082 265

Access, 12, pp.72303-72316.

Salem, N., Hudaib, A., Al-Tarawneh, K., Salem, H., Tareef, A., Salloum, H.,
and Mazzara, M., 2024. A survey on the application of large language models in
software engineering. Computer Research and Modeling, 16(7), pp.1715-1726.

Sikand, S., Mehra, R., Sharma, V.S., Kaulgud, V., Podder, S., and Burden, A.P.,
2024. Do generative AI tools ensure green code? An investigative study. In:
Proceedings of the 2nd International Workshop on Responsible AI Engineering.
ACM, New York, USA, pp.52-55.

Souma, N., Ito, W., Obara, M., Kawaguchi, T., Akinobu, Y., Kurabayashi, T.,
Tanno, H., and Kuramitsu, K., 2023. Can chatGPT correct code based on logical
steps. In: Proceedings - Asia-Pacific Software Engineering Conference, APSEC,
pp.653-654.

Venkatesh, A.P.S., Sabu, S., Mir, A.M., Reis, S., and Bodden, E., 2024. The
emergence of large language models in static analysis: A first look through
micro-benchmarks. In: Proceedings of the 2024 IEEE/ACM First International
Conference on AI Foundation Models and Software Engineering. ACM,
New York, USA, pp.35-39.

Villmow, J., Campos, V., Petry, J., Abbad-Andaloussi, A., Ulges, A., and
Weber, B., 2023. How well can masked language models spot identifiers that
violate naming guidelines? In: 2023 IEEE 23rd International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, United States,
pp.131-142.

Wadhwa, N., Pradhan, J., Sonwane, A., Sahu, S.P., Natarajan, N., Kanade, A.,
Parthasarathy, S., and Rajamani, S., 2024. CORE: Resolving code quality issues
using LLMs. In: Proceedings of the ACM on Software Engineering. Vol. 1. ACM,
United States, pp.789-811.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., and Wang, Q., 2024. Software
testing with large language models: Survey, landscape, and vision. IEEE

Transactions on Software Engineering, 50(4), pp.911-936.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In: ACM International Conference
Proceeding Series. ACM, United States.

Yin, X., Ni, C., and Wang, S., 2024. Multitask-based evaluation of open-source
LLM on software vulnerability. IEEE Transactions on Software Engineering,
50(11), pp.3071-3087.

Yuan, Z., Liu, M., Ding, S., Wang, K., Chen, Y., Peng, X., and Lou, Y., 2024.
Evaluating and improving chatGPT for unit test generation. Proceedings of the
ACM on Software Engineering. 1(FSE), pp.1703-1726.

Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., Yu, S., and Chen, Z.,
2023a. A Survey on Large Language Models for Software Engineering. Available
from: https://arxiv.org/abs/2312.15223 [Last assessed on 2025 Jan 04].

Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., Li, J., and Wang, R.,
2023b. Unifying the Perspectives of NLP and Software Engineering: A Survey
on Language Models for Code. pp.1-99. Available from: https://arxiv.org/
abs/2311.07989 [Last assessed on 2025 Jan 04].

Zheng, Z., Ning, K., Wang, Y., Zhang, J., Zheng, D., Ye, M., and Chen, J., 2023a.
A survey of large language models for code: Evolution, benchmarking, and
future trends. ACM Transactions on Software Engineering and Methodology,
31(2), pp.1-44.

Zheng, Z., Ning, K., Zhong, Q., Chen, J., Chen, W., Guo, L., Wang, W., and
Wang, Y., 2023b. Towards an understanding of large language models in software
engineering tasks. Empirical Software Engineering, 30(2), p.50.

Zhou, X., Cao, S., Sun, X., and Lo, D., 2024. Large Language Model for
Vulnerability Detection and Repair: Literature Review and the Road Ahead.
Vol. 1. Available from: https://arxiv.org/abs/2404.02525 [Last assessed on
2025 Jan 04].

